Examples & board definitions for part 2 of the "Model Checking and Games" lecture series

Ruediger Ehlers

September 2, 2019

1 On notation

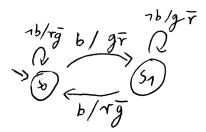
Henceforth, we use sets and their *characteristic functions* interchangeably. A *characteristic function* of a set $S' \subseteq S$ is a function $f: S \to \mathbb{B}$ such that for all $s \in S$, $f_{S'}(s) = \mathbf{true}$ if $s \in S'$, and $f(s) = \mathbf{false}$ otherwise.

For instance, $\{a,b\} \subseteq S$ for the base set $S = \{a,b,c\}$ is seen as equivalent to the function $\{a \mapsto \mathbf{true}, b \mapsto \mathbf{true}, c \mapsto \mathbf{false}\}.$

Henceforth, we will also use 0 and 1 and ff and tt as synonyms for false and true, which are the elements of the set of Booleans B. Many examples otherwise become too lengthy.

An example for a trace

Let us consider the following Mealy machine (in graphical notation):



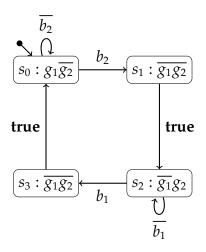
The Mealy machine can also be represented using a *transition table*, which explains for every computation of state and next input what the next state and the next output will be:

Predecessor state	Next input	Successor state	Next output
S_0	Ø	s_0	{r}
s_0	{ <i>b</i> }	s_1	{ <i>g</i> }
s_1	Ø	s_1	{ <i>g</i> }
s_1	{b}	s_0	$ $ $\{r\}$

A combination of example trace and an example run:

$\rho = $	$\{b\mapsto \mathbf{false},$	$ \{b \mapsto true, $	$\{b\mapsto \mathbf{true},$		
	$r \mapsto true$,	$r \mapsto \mathbf{false}$,	$r \mapsto \mathbf{true}$		$\in (2^{AP^I \cup AP^O})^\omega$
	$g \mapsto \mathbf{false}$	$r \mapsto true$	$g \mapsto \mathbf{false}$		
$\pi =$	s_0	s_0	s_1	s_0	$\in S^{\omega}$

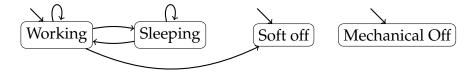
2 A Moore machine



Example trace/run combination:

3 Transition systems

Example: Processor ACPI States

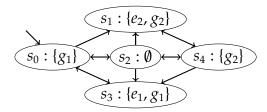


4 Labeled Transition Systems

Example: Processor ACPI States - Without state names, but with "computing" labels

5 Traces of Kripke structures

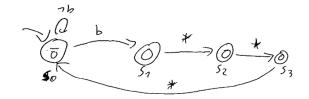
A traffic light with an ambulance override

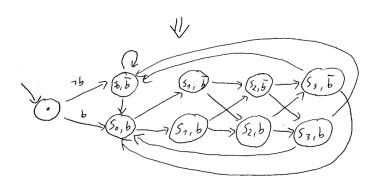


Example trace: $\{g_1\} \{e_1, g_1\} \{g_1\} \{\emptyset\} \{e_1, g_1\} \dots$

6 Translation from Mealy/Moore machines to Kripke structures

Example: A light switch that switches itself off after a while. Button presses with the light on are ignored.





Proposition 6.1. Let $\mathcal{M} = (S, \Sigma^I, \Sigma^O, \delta, L, s_0)$ be a Moore machine with $\Sigma^I = 2^{\mathsf{AP}^I}$ and $\Sigma^O = 2^{\mathsf{AP}^O}$ and $\mathcal{K} = (S', S'_0, T', \mathsf{AP}, L')$ be the corresponding Kripke structure.

There is a bijection between traces $\rho = (\rho_0^O, \rho_0^I)(\rho_1^O, \rho_1^I) \dots \in (\Sigma^I \times \Sigma^O)^\omega$ of \mathcal{M} and traces $\rho' = \rho_0 \rho_1 \dots \in (2^{\mathsf{AP}})^\omega$ of \mathcal{K} .

Proof. We prove a bijection between traces $\rho = (\rho_0^O, \rho_0^I)(\rho_1^O, \rho_1^I) \dots \in (\Sigma^I \times \Sigma^O)^\omega$ of \mathcal{M} and traces $\rho' = \rho_0 \rho_1 \dots \in (2^{\mathsf{AP}})^\omega$ with $\rho_0' = \emptyset$ and $\rho_{j+1}' = \rho_j^O \cup \rho_j^I$ for all $j \in \mathbb{N}$.

 $\underline{\Rightarrow}$: If ρ is a trace of \mathcal{M} and $\pi = \pi_0 \pi_1 \dots$ is the corresponding run of \mathcal{M} , then by the definition of traces and runs, we have that for all $j \in \mathbb{N}$, we have $(\pi_j, \rho_j^I, \pi_{j+1}) \in \delta$. By the definition of \mathcal{K} , this implies that for all $j \in \mathbb{N}$, we have $((\pi_j, \rho_j^I), (\pi_{j+1}, \rho_{j+1}^I)) \in T$. By the definition of L', we furthermore have that $L'((\pi_j, \rho_j^I)) = \rho_j^I \cup \rho_j^O$. Hence, we have $\rho' = \emptyset(\rho_0^O, \rho_0^I)(\rho_1^O, \rho_1^I) \dots$

 $\underline{\Leftarrow}$: Let $\rho = \emptyset(\rho_1^I, \rho_1^O)(\rho_2^I, \rho_2^O) \dots \in (2^{\mathsf{AP}})^\omega$ be a trace of \mathcal{K} .¹ Be the definition of a trace, there exists a corresponding run $\pi' = \pi'_0(\pi'_1, i_1)(\pi'_2, i_2) \dots \in S'^\omega$ for which we furthermore have $\pi'_0 = \cdot$ (by the fact that \cdot is the only initial state in \mathcal{K}), and for all $j \in \{1, 2, \ldots\}$, we have $\rho_j^O = L(\pi_j)$ and $\rho_j^I = i_j$ (by the definition of T'). We build a run $\pi = \pi_0 \pi_1$ for \mathcal{M} for ρ by setting $\pi_j = \pi'_{j+1}$ for all $j \in \mathbb{N}$. By the fact that by the construction of T', we have $\pi_{j+1} = \delta(\pi_j, \rho_{j-1}^I)$ for all $j \in \mathbb{N}$, it follows that π is a run of \mathcal{M} . Since furthermore by $L(\pi_j) = \rho_{j-1}^O$ for all $j \in \mathbb{N}$, it follows that $(\rho_1^I, \rho_1^O)(\rho_2^I, \rho_2^O) \dots$ is also a trace of \mathcal{M} .

7 Programs as Kripke structures – Single process

States are named by:

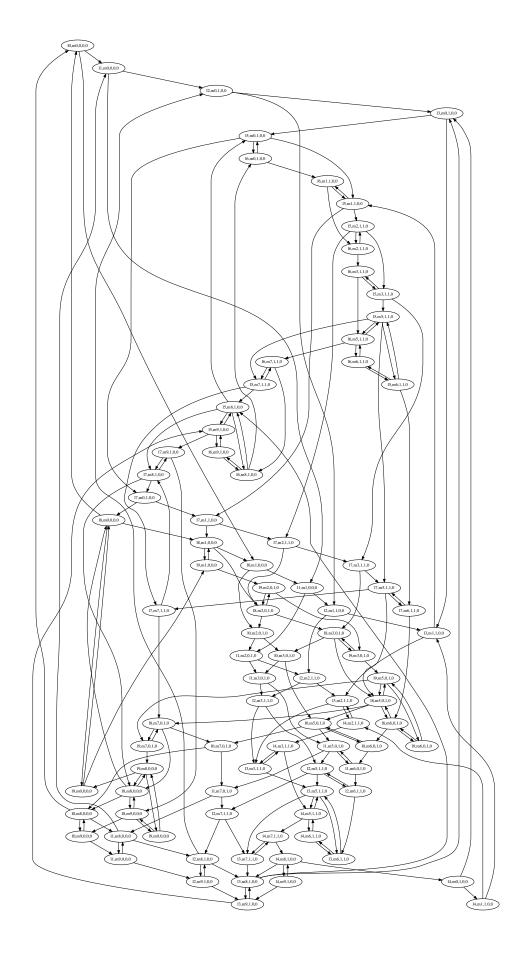
- their program location (also called the *program counter*),
- the value of flag0,
- the value of flag1, and
- the value of turn.



Note that the Kripke structure contains states for all combinations of program location and variable values. This becomes important for the composition of different processes.

¹We can assume, w.l.o.g., that the first element is \emptyset as the only initial state of ρ is labeled by \emptyset .

8 Programs as Kripke structures – Both processes



9 SPIN – First model (warning – with bug)

```
int turn = 0;
int flag0 = 0;
int flag1 = 0;
active proctype A() {
    do
        :: {
            flag0 = 1;
            turn = 0;
            do
                 :: flag1==1 && turn==0 -> skip;
                 :: else -> break;
            od
            do
                 :: skip;
                 :: break;
            od
            flag0 = 0;
            do
                 :: skip;
                 :: break;
            od
        }
    od
}
active proctype B() {
    do
        :: {
            flag1 = 1;
            turn = 1;
            do
                 :: flag0==1 && turn==0 -> skip;
                 :: else -> break;
            od
            do
                 :: skip;
                 :: break;
            od
            flag1 = 0;
            do
                 :: skip;
                 :: break;
            od
        }
    od
}
```

10 SPIN – Model with verification condition (still with bug)

```
int turn = 0;
int flag0 = 0;
int flag1 = 0;
int critical1 = 0;
active proctype A() {
    do
        :: {
            flag0 = 1;
            turn = 0;
            do
                 :: flag1==1 && turn==0 -> skip;
                 :: else -> break;
            od
            do
                 :: assert(critical1==0);
                 :: break;
            od
            flag0 = 0;
            do
                 :: skip -> skip;
                 :: break;
            od
        }
    od
}
active proctype B() {
    do
        :: {
            flag1 = 1;
            turn = 1;
            do
                 :: flag0==1 && turn==0 -> skip;
                 :: else -> break;
            od
            critical1 = 1;
                 :: skip -> skip;
                 :: break;
            od
            critical1 = 0;
            flag1 = 0;
            do
                 :: skip -> skip;
                 :: break;
            od
```

```
od }
```

The bug is that the second condition "turn==0" should be "turn==1".