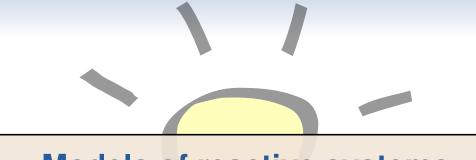
Model Checking and Games

Part II - Basics of Modelling Reactive Systems

Rüdiger Ehlers, Clausthal University of Technology

September 2019

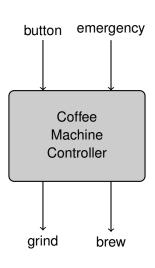


Traces

Reactive systems

- We assume that a system evolves in steps
- At every point in time, a reactive system reads its input and writes to its output
- When we continually observe the input/output of a system, we obtain a trace of the system

Reactive systems - example



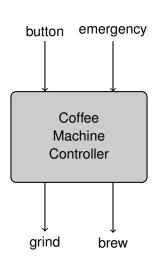
Input/output shape

Here: In every step, the input *bit* has a value and the output *bits* have values, too.

Atomic propositions

- AP_I = {button, emergency}
- \bullet AP_O = {grind, brew}

Reactive systems - example



Input/output shape

Here: In every step, the input *bit* has a value and the output *bits* have values, too.

Atomic propositions

- AP_I = {button, emergency}
- $AP_O = \{grind, brew\}$

A trace of the system

Mealy & Moore machines

Order of the input and output

- Mealy machine: in every step of the system's execution, the system first reads the input and then produces the output.
- Moore machine: in every step of the system's execution, the system first produces the output and then reads the input.

Mealy machines

Definition

A Mealy machine is a tuple $\mathcal{M} = (S, \Sigma^I, \Sigma^O, \delta, s_0)$ with:

- the set of states S,
- the input alphabet Σ^{I} ,
- the output alphabet Σ^O ,
- the transition function $\delta: S \times \Sigma^I \to S \times \Sigma^O$, and
- the initial state $s_0 \in S$.

Traces & runs

A trace of \mathcal{M} is an infinite sequence $\rho = (\rho_0^O, \rho_0^I)(\rho_1^O, \rho_1^I) \ldots \in (\Sigma^I \times \Sigma^O)^\omega$ such that there exists a corresponding run of \mathcal{M} of the form $\pi = \pi_0 \pi_1 \ldots \in S^\omega$ with $(\pi_{i+1}, \rho_i^O) = \delta(\pi_i, \rho_i^I)$ for for all $i \in \mathbb{N}$ and $\pi_0 = s_0$.

On notation

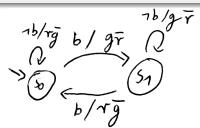
A note on alphabets

In most examples, we will have $\Sigma^I = 2^{AP^I}$ and $\Sigma^O = 2^{AP^O}$ for some sets of *atomic propositions* AP^I and AP^O .

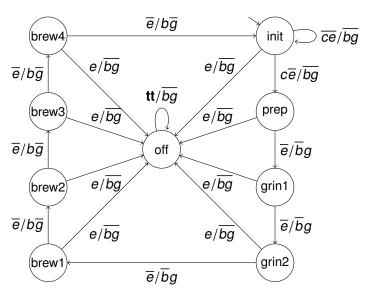
The definition of Mealy machines does not require this, however.

Graphical notation for Mealy machines

Example:
$$\mathcal{M} = (S, \Sigma^{I}, \Sigma^{O}, \delta, s_{0})$$
 with $S = \{s_{0}, s_{1}\}, \Sigma^{I} = 2^{\{b\}}, \Sigma^{O} = 2^{\{r,g\}}, \delta(s_{0}, \emptyset) = (s_{0}, \{r\}), \delta(s_{0}, \{b\}) = (s_{1}, \{g\}), \delta(s_{1}, \emptyset) = (s_{1}, \{g\}), \delta(s_{1}, \{b\}) = (s_{0}, \{r\}).$



Example: Coffee machine



Moore machines

Definition

A Moore machine is a tuple $\mathcal{M} = (S, \Sigma^I, \Sigma^O, \delta, L, s_0)$ with:

- the set of states S,
- the input alphabet Σ^{I} ,
- the output alphabet Σ^O ,
- the labeling function $L: S \to \Sigma^O$,
- the transition function $\delta: S \times \Sigma^I \to S$, and
- the initial state $s_0 \in S$.

Traces & runs

A trace of \mathcal{M} is an infinite sequence $\rho = (\rho_0^O, \rho_0^I)(\rho_1^O, \rho_1^I) \dots \in (\Sigma^I \times \Sigma^O)^\omega$ such that there exists a corresponding run of \mathcal{M} of the form $\pi = \pi_0 \pi_1 \dots \in S^\omega$ with $\pi_{i+1} = \delta(\pi_i, \rho_i^I)$ and $L(\pi_i) = \rho_i^O$ for all $i \in \mathbb{N}$.

Mealy vs. Moore machines (1)

Differences

- Mealy machines read the input before selecting the next output
- Moore machines read the input after selecting the next output

Mealy → Moore translation

Translation Moore → Mealy

Given a Moore machine $\mathcal{M} = (S, \Sigma^I, \Sigma^O, \delta, L, s_0)$, we define its corresponding translation to a Mealy machine $\mathcal{M}' = (S, \Sigma^I, \Sigma^O, \delta', s_0)$ with:

•
$$\delta'(s,i) = (\delta(s,i), L(s))$$
 for all $s \in S$, $i \in \Sigma^I$

Lemma

Claim: \mathcal{M} and \mathcal{M}' induce the same set of traces.

Proof: \Rightarrow Let $\rho = (\rho_0^O, \rho_0^I)(\rho_1^O, \rho_1^I) \dots \in$ be a trace of \mathcal{M} and $\pi = \pi_0 \pi_1 \dots$ be the corresponding run. So we have that for every $i \in \mathbb{N}$, by definition, $\pi_{i+1} = \delta(\pi_i, \rho_i^I)$ and $L(\pi_i) = \rho_i^O$ for all $i \in \mathbb{N}$. By the definition of δ' , we also have $\delta'(\pi_i, \rho_i^I) = (\pi_{i+1}, \rho_i^O)$ for all $i \in \mathbb{N}$. Since $\pi_0 = s_0$ (by assumption), this means that ρ is also a trace of \mathcal{M}' .

←: Analogous

Less structured models: Transition systems

Definition

A transition system is a tuple (S, S_0, T) with:

- a set of states S,
- a set of initial states S_0 , and
- a set of transitions $T \subseteq S \times S$.

Transition systems (2)

Definition

Given a transition system $\mathcal{T} = (S, S_0, T)$, we say that

- a sequence $\pi = \pi_0 \pi_1 \dots \in S^{\omega}$ is an *infinite run* of \mathcal{T} if we have $\pi_0 \in S_0$ and for every $i \in \mathbb{N}$, we have $(\pi_i, \pi_{i+1}) \in \mathcal{T}$, and
- a sequence $\pi = \pi_0 \pi_1 \dots \pi_n \in S^*$ is a *finite run* of \mathcal{T} if we have $\pi_0 \in S_0$ and for every $i \in \{0, \dots, n-1\}$, we have $(\pi_i, \pi_{i+1}) \in \mathcal{T}$.

Transition systems vs. Mealy and Moore machines

Differences

- Transition systems have less structure: No explicit input or output, no labels.
- Transition systems have non-determinism: no single initial state, system can behave arbitrarily.

Kripke structures: Labeled transition systems

Definition

A Kripke structure is a tuple (S, S_0, T, AP, L) with:

- a set of states S,
- a set of initial states S_0 , and
- a set of transitions $T \subseteq S \times S$.
- a set of propositions AP, and
- a labelling function $L: S \to 2^{AP}$.

Traces of Kripke structures

Definition (infinite trace)

If $\pi=\pi_0\pi_1\ldots\in S^\omega$ is an *infinite run* of $\mathcal T$, then we call $\rho=L(\pi_0)L(\pi_1)\ldots$ an infinite *trace* of $\mathcal T$.

Definition (finite trace)

If $\pi = \pi_0 \pi_1 \dots \pi_n \in S^*$ is a *finite run* of \mathcal{T} , then we call $\rho = L(\pi_0)L(\pi_1)\dots L(\pi_n)$ a finite *trace* of \mathcal{T} .

Comparison: LTS vs Mealy & Moore machines

Comparison		
Aspect	Mealy / Moore Machines	Labeled Tran- sition systems
Input & Output	Clearly separated	No separation
Determinism	Yes	No
Time	Discrete time steps	No concrete no- tion of time
Ability to abstract from details	No	Yes
Non-binary alpha- bets	Yes	No

Use of Kripke structues

They are a good model for verifying systems to be correct!

If we want to analyze for whether a system works correctly, they are a suitable model.

If we capture the desired behavior of the system as a *set of* (allowed) traces, then we can check if the traces of the model are all contained in them.

Use of Kripke structues

They are a good model for verifying systems to be correct!

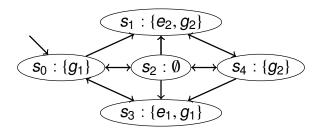
If we want to analyze for whether a system works correctly, they are a suitable model.

If we capture the desired behavior of the system as a *set of* (allowed) traces, then we can check if the traces of the model are all contained in them.

But beware!

The LTS must capture *all* possible executions of the system for this to work!

Revisiting the traffic light with an ambulance override



Question: Are there traces induced by this Kripke structure on which the second green light (g_2) is never lit?

Definition by example of Moore machines

Given a Moore machine $\mathcal{M}=(S,\Sigma^I,\Sigma^O,\delta,L,s_0)$ with $\Sigma^I=2^{\mathsf{AP}^I}$ and $\Sigma^O=2^{\mathsf{AP}^O}$, we define the *corresponding* Kripke structure $\mathcal{K}=(S',S_0',T',\mathsf{AP},L')$ with:

- $S' = S \times \Sigma^I \uplus \{\cdot\}$
- $S_0' = \{\cdot\}$
- $\bullet \mathsf{AP} = \mathsf{AP}^I \uplus \mathsf{AP}^O$
- $T = \{(\cdot, (s, i)) \mid i \subseteq 2^{AP^l}, s \in S_0\} \cup \{((s, i), (s', i')) \mid (s, i), (s', i') \in S \times \Sigma^l. (s, i, s') \in \delta\}$
- For all $(s, i) \in S \times \Sigma^{I}$, $L'((s, i)) = L(s) \cup i$
- $L'(\cdot) = \emptyset$

Consequence

Consequence

If we want to reason about the set of possible traces of a Mealy or Moore machine (e.g., for verifying that the Mealy or Moore machine has some desired properties), we can do so on the corresponding Kripke structure.

Side-note

...but non-binary alphabets may require some care.

Let's look at circuits

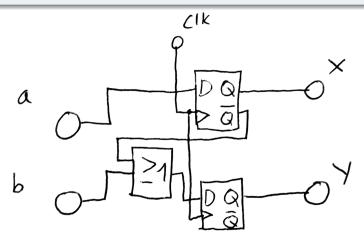
Modelling the behavior of a circuit as a Kripke structure

We can also analyze the behavior of a circuit

Let's look at circuits

Modelling the behavior of a circuit as a Kripke structure

We can also analyze the behavior of a circuit

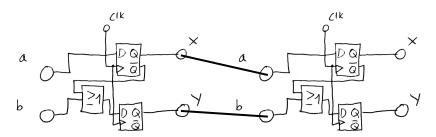


Large circuits

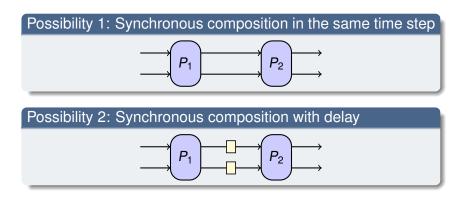
Observation

The Kripke structures can grow quite large in this process. For larger circuits, we need some **structured way** to compose the parts:

Example:



Synchronous communication between processes



Synchronous composition (delayed version)

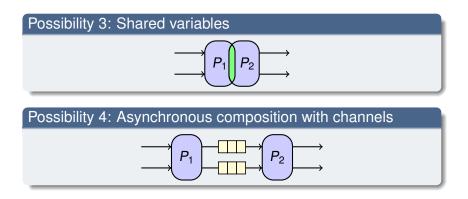
Definition

Let $\mathcal{K}^1=(S^1,S^1_0,T^1,\mathsf{AP}^1,L^1)$ and $\mathcal{K}^2=(S^2,S^2_0,T^2,\mathsf{AP}^2,L^2)$ be Kripke structures.

We define the synchronous product (with delay) of \mathcal{K}^1 and \mathcal{K}^2 as the Kripke structure $\mathcal{K}^P = (S^P, S_0^P, T^P, AP^P, L^P)$ with:

- $S^P = S^1 \times S^2$
- $S_0^P = S_0^1 \times S_0^2$
- $AP^P = \{p^1 \mid p \in AP^1\} \cup \{p^2 \mid p \in AP^2\}$
- $L((s^1, s^2)) = \{p^1 \mid p \in L^1(s^1)\} \cup \{p^2 \mid p \in L^2(s^2)\}$
- $T^P = \{((s^1, s^2), (s'^1, s'^2)) \subseteq S^P \mid L^2(s'^2) \cap AP^1 \cap AP^2 = L^1(s^1) \cap AP^1 \cap AP^2\}.$

Ansynchronous composition between processes



Towards asynchronous composition: Modelling software as Kripke structures

Example program (Peterson's Mutex algorithm, part 1)

```
bool flag0 = false;
bool flag1 = false;
bool turn = false;
while (true) {
    flag0 = true:
    turn = false;
    while (flag1 == true && turn == false) {
        skip;
    while (havoc) {
        skip;
    flag0 = false;
    while (havoc) {
        skip;
```


Towards asynchronous composition: Modelling software as Kripke structures

Example program (Peterson's Mutex algorithm, part 1)

```
bool flag0 = false;
   bool flag1 = false;
   bool turn = false;
10: while (true) {
11: flag0 = true;
12: turn = false;
13: while (flag1 == true && turn == false) {
14:
           skip;
15:
       while (havoc) {
16:
           skip;
17:
        flag0 = false:
18:
        while (havoc) {
19:
           skip:
```


Example program (Peterson's Mutex algorithm, all parts)

```
bool flag0 = false;
                        bool flag1 = false:
                        bool turn = false:
10: while (true) {
                                    m0: while (true) {
11:
       flag0 = true;
                                || m1:
                                        flag1 = true;
12: turn = false;
                                || m2: turn = true;
13: while (flag1 == true &&
                                || m3: while (flag0 == true &&
           turn == false) {
                                                turn == true) {
14:
                                || m4:
           skip:
                                                skip:
15:
       while (havoc) {
                                    m5:
                                            while (havoc) {
16:
           skip:
                                    m6:
                                                skip:
17:
       flag0 = false;
                                    m7:
                                            flag1 = false;
18:
       while (havoc) {
                                            while (havoc) {
                                    m8:
19:
           skip;
                                    m9:
                                                skip;
```

Asynchronous composition

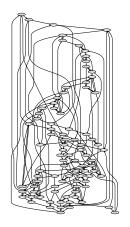
Definition

Let $\mathcal{K}^1=(S^1,S_0^1,T^1,\mathsf{AP}^1,L^1)$ and $\mathcal{K}^2=(S^2,S_0^2,T^2,\mathsf{AP}^2,L^2)$ be Kripke structures such that $S^1=V\times M^1$ and $S^2=V\times M^2$.

We define the asynchronous product of \mathcal{K}^1 and \mathcal{K}^2 as the Kripke structure $\mathcal{K}^P = (S^P, S_0^P, T^P, AP^P, L^P)$ with:

- $S^P = M^1 \times M^2 \times V$
- $S_0^P = \{(m^1, m^2, v) \in S^P \mid (m^1, v) \in S_0^1, (m^2, v) \in S_0^2\}$
- $\bullet \mathsf{AP}^P = \mathsf{AP}^1 \cup \mathsf{AP}^2$
- $L((m^1, m^2, v)) = L^1((m^1, v)) \cup L^2((m^2, v))$
- $T^P = \{((m^1, m^2, v), (m'^1, m^2, v')) \mid ((m^1, v), (m'^1, v') \in T^1\} \cup \{((m^1, m^2, v), (m^1, m'^2, v')) \mid ((m^2, v), (m'^2, v') \in T^2\}$

Complete product

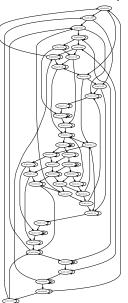


Simplified example

Simplified program (Peterson's Mutex algorithm, all parts)

```
bool flag0 = false;
                         bool flag1 = false;
                         bool turn = false:
10: while (true) {
                                     m0: while (true) {
        flag0 = true:
                                             flag1 = true:
11:
      turn = false;
                                     m1: turn = true;
12:
       while (flag1 == true &&
                                             while (flag0 == true &&
                                     m2:
            turn == false) {
                                                 turn == true) {
            skip;
                                                 skip;
13:
        while (havoc) {
                                     m3:
                                             while (havoc) {
            skip;
                                                 skip;
14:
        flag0 = false;
                                     m4:
                                             flag1 = false;
15:
        while (havoc) {
                                     m5:
                                             while (havoc) {
            skip;
                                                 skip;
```

Complete product for the simplified program



Discussion

Kripke structures & transition systems

- Give a account of what states in a system can be reached
- They can be labeled or not depending on what we want to analyze about them:
 - Are certain states reachable?
 - What traces does the Kripke structure induce?
- We already saw the state space explosion problem: even for small circuits/programs/models, the number of states can become huge!

The model checker spin

Some facts

- Developed by Gerard Holzmann
- Uses the specification language Promela (for "Process meta language")
- Runs under Unix/Linux, compiles models into executable code for enumerating the states in a transition system

Official Website: http://spinroot.com

Getting spin to run

Local "Installation" (using the RZ application server):

```
ssh -Y username@cloud-249.rz.tu-clausthal.de
git clone https://github.com/nimble-code/Spin.git
cd Spin
make
cd ..
```

Using the GUI after logging in (with ssh -Y):

```
bash
export PATH=$PATH:~/Spin/Src
~/Spin/optional_gui/ispin.tcl
```

Unter Windows, you may want want to try MobaXTerm or a similar tool instead of ssh (or start from a Linux virtual machine).

Summary / List of Concepts

- Synchronous reactive systems, Mealy and Moore machines
- Labeled transition systems & Kripke structures
- Traces of Mealy machines, Moore machine, and Kripke structures
- Programs as models
- Composition of Kripke structures: synchronous (delayed) and asynchronous (with shared variables)
- Model checker spin

References I