Model Checking and Games

Part V - Model checking CTL

Rüdiger Ehlers, Clausthal University of Technology

September 2019

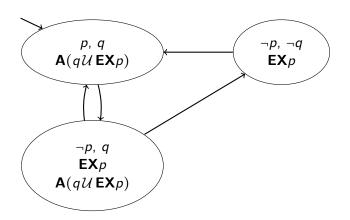
Model checking CTL vs. model checking LTL

Computation tree logic

- While LTL is a logic on traces, CTL is a logic on states
- This means that every node in the computation tree induced by a Kripke structure satisfies a CTL formula or not.
- Note that the subtrees of two nodes of the computation tree corresponding to the same Kripke structure are identical.
 - \rightarrow so we can label every node of a Kripke structure by the CTL (sub-)formulas that they satisfy!

Example using a simple Kripke structure

CTL formula of interest: A(qUEXp)



How to find which states satisfy a CTL (sub-)formula?

$\neg p$ and p for $p \in AP$

The Kripke structure is already labeled by the propositions holding from a state

$\mathbf{E}\mathbf{X}\psi$

Label all states with $\mathbf{EX}\psi$ that have one successor state satisfying $\psi.$

$\mathbf{AX}\psi$

Label all states with $\mathbf{AX}\psi$ for which all successor states satisfy ψ .

Labeling states with CTL subformulas (continued)

$\mathsf{EF}\psi$

Perform the following steps:

- Label every state satisfying ψ with $\mathbf{EF}\psi$.
- ullet Label every state with a successor state labeled by ${\bf E} {f F} \psi$ by ${\bf E} {f F} \psi$ as well.
- Repeat the previous step until no more states can be labeled with $\mathbf{EF}\psi$.

$AG\psi$

Let us use the fact that $\mathbf{AG}\psi \equiv \mathbf{EF}\neg\psi$. Using this fact, we can execute the following approach:

- Initially, label every state satisfying ψ with $\mathbf{AG}\psi$.
- Remove the $\mathbf{AG}\psi$ label of every state with a successor state not labelled by $\mathbf{AG}\psi$.
- Repeat the previous step until no more state labels can be removed.

Labeling states with CTL subformulas (continued)

$\mathsf{E}(\psi \, \mathcal{U} \, \psi')$

Perform the following steps:

- Label every state satisfying ψ' with $\mathbf{E}(\psi \mathcal{U} \psi')$.
- Label every state satisfying ψ and having a successor labeled with ${\bf E}(\psi\,{\cal U}\,\psi')$ also as ${\bf E}(\psi\,{\cal U}\,\psi')$.
- Repeat the previous step until no more states can be labeled with $\mathbf{E}(\psi \mathcal{U} \psi')$.

$A(\psi \mathcal{U} \psi')$

Perform the following steps:

- Label every state satisfying ψ' with $\mathbf{A}(\psi \mathcal{U} \psi')$.
- Label every state satisfying ψ and having only successor states labeled with $\mathbf{A}(\psi \mathcal{U} \psi')$ also as $\mathbf{A}(\psi \mathcal{U} \psi')$.
- Repeat the previous step until no more states can be labeled with $\mathbf{A}(\psi \mathcal{U} \psi')$.

Question

Main question

Rather than giving algorithms for each operator, can we somehow give a *uniform approach* that is parameterized by each temporal logic operator?

Answer

There is an encoding of each operator into modal μ -calculus, which gives a theoretical foundation to evaluating CTL formulas

Modal μ -calculus (short version!)

Syntax

Modal μ -calculus is an extension of propositional logic. For some given set of variable symbols \mathcal{V} , formulas in modal μ -calculus over some set of variables with defined values V and some set of atomic proposition AP is are defined as follows (for $p \in \text{AP}$ and $x \in \mathcal{V} \setminus V$):

$$\psi(V, \mathsf{AP}) := \top |\bot| p |x| \Box \psi(V, \mathsf{AP}) | \diamondsuit \psi(V, \mathsf{AP})$$
$$| \psi(V, \mathsf{AP}) \cup \psi(V, \mathsf{AP}) | \psi(V, \mathsf{AP}) \cap \psi(V, \mathsf{AP})$$
$$| \mu x. \psi(V \cup \{x\}, \mathsf{AP}) | \nu x. \psi(V \cup \{x\}, \mathsf{AP})$$

Semantics

Let a Kripke structure $\mathcal{K}=(S,S_0,T,\mathsf{AP},L)$ be given. Let $V\subseteq\mathcal{V}$ be a subset of variables of \mathcal{V} and $M:V\to 2^S$ be a valuation of the variables. A subformula for some variable assignment M always evaluates to some subset of S. We define the semantics of a subformula in $modal\ \mu\text{-}calculus$ (for $p\in\mathsf{AP}$ and $X\in\mathcal{V}\setminus V$): as follows:

Closed formulas

A *closed* mu-calculus formula is defined over the variables $V = \emptyset$ and hence can be evaluated on a Kripke structures. It can thus denote a specification.

Using fixed point equation

We can formalize these rules as follows:

$AX\psi$	$\Box\psi$
$EX\psi$	$\Diamond \psi$
$AG\psi$	$\nu X.\psi \cap \Box X$
$EG\psi$	$\nu X.\psi \cap \diamondsuit X$
$AF\psi$	$\mu X.\psi \cup \Box X$
$EF\psi$	$\mu X.\psi \cup \diamondsuit X$
$A(\psi\mathcal{U}\psi')$	$\mu X.\psi' \cup (\psi \cap \Box X)$
$E(\psi \mathcal{U} \psi')$	$\mu X.\psi' \cup (\psi \cap \diamondsuit X)$
$A(\psiR\psi')$	$\nu X.\psi' \cap (\psi \cup \Box X)$
$E(\psiR\psi')$	$\nu X.\psi' \cap (\psi \cup \diamondsuit X)$

Summary / List of Concepts

- Model checking CTL by labeling Kripke structure states
- Simple algorithms for some sub-formulas
- Modal μ -calculus (a very short version!)
- Translating CTL to modal μ -calculus

References I