Model Checking and Games

Part V - Model checking CTL

Rüdiger Ehlers, Clausthal University of Technology

September 2019

Computation tree logic

• While LTL is a logic on traces, CTL is a logic on states

Computation tree logic

- While LTL is a logic on traces, CTL is a logic on states
- This means that every node in the computation tree induced by a Kripke structure satisfies a CTL formula or not.

Computation tree logic

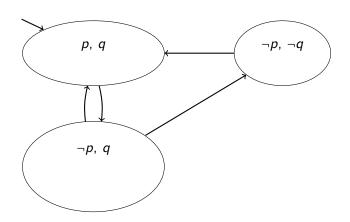
- While LTL is a logic on traces, CTL is a logic on states
- This means that every node in the computation tree induced by a Kripke structure satisfies a CTL formula or not.
- Note that the subtrees of two nodes of the computation tree corresponding to the same Kripke structure are identical.

Computation tree logic

- While LTL is a logic on traces, CTL is a logic on states
- This means that every node in the computation tree induced by a Kripke structure satisfies a CTL formula or not.
- Note that the subtrees of two nodes of the computation tree corresponding to the same Kripke structure are identical.
 - \rightarrow so we can label every node of a Kripke structure by the CTL (sub-)formulas that they satisfy!

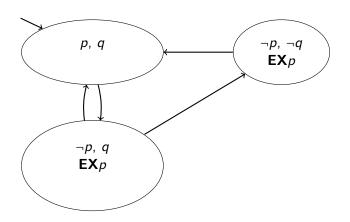
Example using a simple Kripke structure

CTL formula of interest: A(qUEXp)



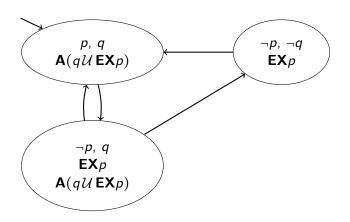
Example using a simple Kripke structure

CTL formula of interest: A(qUEXp)



Example using a simple Kripke structure

CTL formula of interest: A(qUEXp)



$\neg p$ and p for $p \in AP$

The Kripke structure is already labeled by the propositions holding from a state

$\neg p$ and p for $p \in AP$

The Kripke structure is already labeled by the propositions holding from a state

$\neg p$ and p for $p \in AP$

The Kripke structure is already labeled by the propositions holding from a state

$\mathbf{E}\mathbf{X}\psi$

Label all states with $\mathbf{EX}\psi$ that have one successor state satisfying $\psi.$

$\neg p$ and p for $p \in AP$

The Kripke structure is already labeled by the propositions holding from a state

$\mathbf{E}\mathbf{X}\psi$

Label all states with $\mathbf{EX}\psi$ that have one successor state satisfying $\psi.$

$\mathbf{AX}\psi$

$\neg p$ and p for $p \in AP$

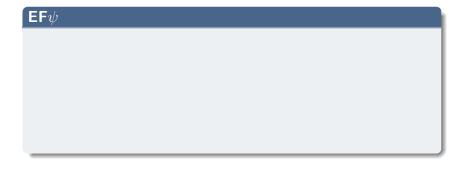
The Kripke structure is already labeled by the propositions holding from a state

$\mathbf{E}\mathbf{X}\psi$

Label all states with $\mathbf{EX}\psi$ that have one successor state satisfying $\psi.$

$\mathbf{AX}\psi$

Label all states with $\mathbf{AX}\psi$ for which all successor states satisfy ψ .



$\mathsf{EF}\psi$

Perform the following steps:

• Label every state satisfying ψ with $\mathbf{EF}\psi$.

$\mathsf{EF}\psi$

Perform the following steps:

- Label every state satisfying ψ with $\mathbf{EF}\psi$.
- Label every state with a successor state labeled by $\mathbf{E}\mathbf{F}\psi$ by $\mathbf{E}\mathbf{F}\psi$ as well.

$\mathsf{EF}\psi$

Perform the following steps:

- Label every state satisfying ψ with $\mathbf{EF}\psi$.
- ullet Label every state with a successor state labeled by ${\bf E} {f F} \psi$ by ${\bf E} {f F} \psi$ as well.
- Repeat the previous step until no more states can be labeled with $\mathbf{EF}\psi$.

$\mathsf{EF}\psi$

Perform the following steps:

- Label every state satisfying ψ with **EF** ψ .
- ullet Label every state with a successor state labeled by ${\bf E} {f F} \psi$ by ${\bf E} {f F} \psi$ as well.
- Repeat the previous step until no more states can be labeled with $\mathbf{EF}\psi$.

$\mathbf{AG}\psi$

$\mathsf{EF}\psi$

Perform the following steps:

- Label every state satisfying ψ with **EF** ψ .
- ullet Label every state with a successor state labeled by ${\bf E} {f F} \psi$ by ${\bf E} {f F} \psi$ as well.
- Repeat the previous step until no more states can be labeled with $\mathbf{EF}\psi$.

$\mathbf{AG}\psi$

Let us use the fact that $\mathbf{AG}\psi \equiv \mathbf{EF}\neg\psi$. Using this fact, we can execute the following approach:

$\mathsf{EF}\psi$

Perform the following steps:

- Label every state satisfying ψ with $\mathbf{EF}\psi$.
- ullet Label every state with a successor state labeled by ${\bf E} {f F} \psi$ by ${\bf E} {f F} \psi$ as well.
- Repeat the previous step until no more states can be labeled with $\mathbf{EF}\psi$.

$AG\psi$

Let us use the fact that $\mathbf{AG}\psi \equiv \mathbf{EF}\neg\psi$. Using this fact, we can execute the following approach:

• Initially, label every state satisfying ψ with $\mathbf{AG}\psi$.

$\mathsf{EF}\psi$

Perform the following steps:

- Label every state satisfying ψ with $\mathbf{EF}\psi$.
- ullet Label every state with a successor state labeled by ${\bf E} {f F} \psi$ by ${\bf E} {f F} \psi$ as well.
- Repeat the previous step until no more states can be labeled with $\mathbf{EF}\psi$.

$AG\psi$

Let us use the fact that $\mathbf{AG}\psi \equiv \mathbf{EF}\neg\psi$. Using this fact, we can execute the following approach:

- ullet Initially, label every state satisfying ψ with ${\bf AG}\psi.$
- Remove the $\mathbf{AG}\psi$ label of every state with a successor state not labelled by $\mathbf{AG}\psi$.

$\mathsf{EF}\psi$

Perform the following steps:

- Label every state satisfying ψ with $\mathbf{EF}\psi$.
- ullet Label every state with a successor state labeled by ${\bf E} {f F} \psi$ by ${\bf E} {f F} \psi$ as well.
- Repeat the previous step until no more states can be labeled with $\mathbf{EF}\psi$.

$AG\psi$

Let us use the fact that $\mathbf{AG}\psi \equiv \mathbf{EF}\neg\psi$. Using this fact, we can execute the following approach:

- ullet Initially, label every state satisfying ψ with ${\bf AG}\psi$.
- Remove the $\mathbf{AG}\psi$ label of every state with a successor state not labelled by $\mathbf{AG}\psi$.
- Repeat the previous step until no more state labels can be removed.

$E(\psi\mathcal{U}\psi')$			

$\mathsf{E}(\psi \mathcal{U} \psi')$

Perform the following steps:

• Label every state satisfying ψ' with $\mathbf{E}(\psi \mathcal{U} \psi')$.

$\mathbf{E}(\psi \mathcal{U} \psi')$

Perform the following steps:

- Label every state satisfying ψ' with $\mathbf{E}(\psi \mathcal{U} \psi')$.
- Label every state satisfying ψ and having a successor labeled with $\mathbf{E}(\psi \mathcal{U} \psi')$ also as $\mathbf{E}(\psi \mathcal{U} \psi')$.

$\mathsf{E}(\psi \, \mathcal{U} \, \psi')$

Perform the following steps:

- Label every state satisfying ψ' with $\mathbf{E}(\psi \mathcal{U} \psi')$.
- Label every state satisfying ψ and having a successor labeled with ${\bf E}(\psi\,{\cal U}\,\psi')$ also as ${\bf E}(\psi\,{\cal U}\,\psi')$.
- Repeat the previous step until no more states can be labeled with $\mathbf{E}(\psi \mathcal{U} \psi')$.

$\mathbf{E}(\psi \mathcal{U} \psi')$

Perform the following steps:

- Label every state satisfying ψ' with $\mathbf{E}(\psi \mathcal{U} \psi')$.
- Label every state satisfying ψ and having a successor labeled with ${\bf E}(\psi\,{\cal U}\,\psi')$ also as ${\bf E}(\psi\,{\cal U}\,\psi')$.
- Repeat the previous step until no more states can be labeled with $\mathbf{E}(\psi \mathcal{U} \psi')$.

$A(\psi \mathcal{U} \psi')$

$\mathsf{E}(\psi \, \mathcal{U} \, \psi')$

Perform the following steps:

- Label every state satisfying ψ' with $\mathbf{E}(\psi \mathcal{U} \psi')$.
- Label every state satisfying ψ and having a successor labeled with ${\bf E}(\psi\,{\cal U}\,\psi')$ also as ${\bf E}(\psi\,{\cal U}\,\psi')$.
- Repeat the previous step until no more states can be labeled with $\mathbf{E}(\psi \mathcal{U} \psi')$.

$A(\psi \mathcal{U} \psi')$

Perform the following steps:

• Label every state satisfying ψ' with $\mathbf{A}(\psi \mathcal{U} \psi')$.

$\mathsf{E}(\psi \, \mathcal{U} \, \psi')$

Perform the following steps:

- Label every state satisfying ψ' with $\mathbf{E}(\psi \mathcal{U} \psi')$.
- Label every state satisfying ψ and having a successor labeled with $\mathbf{E}(\psi \mathcal{U} \psi')$ also as $\mathbf{E}(\psi \mathcal{U} \psi')$.
- Repeat the previous step until no more states can be labeled with $\mathbf{E}(\psi \mathcal{U} \psi')$.

$A(\psi \mathcal{U} \psi')$

Perform the following steps:

- Label every state satisfying ψ' with $\mathbf{A}(\psi \mathcal{U} \psi')$.
- Label every state satisfying ψ and having only successor states labeled with $\mathbf{A}(\psi \mathcal{U} \psi')$ also as $\mathbf{A}(\psi \mathcal{U} \psi')$.

$\mathsf{E}(\psi \, \mathcal{U} \, \psi')$

Perform the following steps:

- Label every state satisfying ψ' with $\mathbf{E}(\psi \mathcal{U} \psi')$.
- Label every state satisfying ψ and having a successor labeled with ${\bf E}(\psi\,{\cal U}\,\psi')$ also as ${\bf E}(\psi\,{\cal U}\,\psi')$.
- Repeat the previous step until no more states can be labeled with $\mathbf{E}(\psi \mathcal{U} \psi')$.

$A(\psi \mathcal{U} \psi')$

Perform the following steps:

- Label every state satisfying ψ' with $\mathbf{A}(\psi \mathcal{U} \psi')$.
- Label every state satisfying ψ and having only successor states labeled with $\mathbf{A}(\psi \mathcal{U} \psi')$ also as $\mathbf{A}(\psi \mathcal{U} \psi')$.
- Repeat the previous step until no more states can be labeled with $\mathbf{A}(\psi \mathcal{U} \psi')$.

Question

Main question

Rather than giving algorithms for each operator, can we somehow give a *uniform approach* that is parameterized by each temporal logic operator?

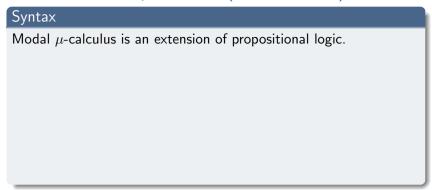
Question

Main question

Rather than giving algorithms for each operator, can we somehow give a *uniform approach* that is parameterized by each temporal logic operator?

Answer

There is an encoding of each operator into modal μ -calculus, which gives a theoretical foundation to evaluating CTL formulas



Syntax

Modal μ -calculus is an extension of propositional logic. For some given set of variable symbols $\mathcal V$, formulas in modal μ -calculus over some set of variables with defined values V and some set of atomic proposition AP is are defined as follows (for $p \in \mathsf{AP}$ and $x \in \mathcal V \setminus V$):

Syntax

Modal μ -calculus is an extension of propositional logic. For some given set of variable symbols \mathcal{V} , formulas in modal μ -calculus over some set of variables with defined values V and some set of atomic proposition AP is are defined as follows (for $p \in \text{AP}$ and $x \in \mathcal{V} \setminus V$):

$$\psi(V, AP) := \top \mid \bot \mid p \mid x$$

Syntax

Modal μ -calculus is an extension of propositional logic. For some given set of variable symbols \mathcal{V} , formulas in modal μ -calculus over some set of variables with defined values V and some set of atomic proposition AP is are defined as follows (for $p \in \text{AP}$ and $x \in \mathcal{V} \setminus V$):

$$\psi(V, AP) := T \mid \bot \mid p \mid x \mid \Box \psi(V, AP) \mid \Diamond \psi(V, AP)$$

Syntax

Modal μ -calculus is an extension of propositional logic. For some given set of variable symbols \mathcal{V} , formulas in modal μ -calculus over some set of variables with defined values V and some set of atomic proposition AP is are defined as follows (for $p \in \text{AP}$ and $x \in \mathcal{V} \setminus V$):

$$\psi(V, \mathsf{AP}) := \top \mid \bot \mid p \mid x \mid \Box \psi(V, \mathsf{AP}) \mid \diamondsuit \psi(V, \mathsf{AP})$$
$$\mid \psi(V, \mathsf{AP}) \cup \psi(V, \mathsf{AP}) \mid \psi(V, \mathsf{AP}) \cap \psi(V, \mathsf{AP})$$

Syntax

Modal μ -calculus is an extension of propositional logic. For some given set of variable symbols $\mathcal V$, formulas in modal μ -calculus over some set of variables with defined values V and some set of atomic proposition AP is are defined as follows (for $p \in \mathsf{AP}$ and $x \in \mathcal V \setminus V$):

$$\psi(V, \mathsf{AP}) := \top |\bot| p |x| \Box \psi(V, \mathsf{AP}) | \diamondsuit \psi(V, \mathsf{AP})$$
$$| \psi(V, \mathsf{AP}) \cup \psi(V, \mathsf{AP}) | \psi(V, \mathsf{AP}) \cap \psi(V, \mathsf{AP})$$
$$| \mu x. \psi(V \cup \{x\}, \mathsf{AP}) | \nu x. \psi(V \cup \{x\}, \mathsf{AP})$$

Syntax

Modal μ -calculus is an extension of propositional logic. For some given set of variable symbols $\mathcal V$, formulas in modal μ -calculus over some set of variables with defined values V and some set of atomic proposition AP is are defined as follows (for $p \in \mathsf{AP}$ and $x \in \mathcal V \setminus V$):

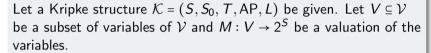
$$\psi(V, \mathsf{AP}) := \top |\bot| p |x| \Box \psi(V, \mathsf{AP}) | \diamondsuit \psi(V, \mathsf{AP})$$
$$| \psi(V, \mathsf{AP}) \cup \psi(V, \mathsf{AP}) | \psi(V, \mathsf{AP}) \cap \psi(V, \mathsf{AP})$$
$$| \mu x. \psi(V \cup \{x\}, \mathsf{AP}) | \nu x. \psi(V \cup \{x\}, \mathsf{AP})$$

Syntax

Modal μ -calculus is an extension of propositional logic. For some given set of variable symbols \mathcal{V} , formulas in modal μ -calculus over some set of variables with defined values V and some set of atomic proposition AP is are defined as follows (for $p \in \text{AP}$ and $x \in \mathcal{V} \setminus V$):

$$\psi(V, \mathsf{AP}) := \top |\bot| p |x| \Box \psi(V, \mathsf{AP}) | \diamondsuit \psi(V, \mathsf{AP})$$
$$| \psi(V, \mathsf{AP}) \cup \psi(V, \mathsf{AP}) | \psi(V, \mathsf{AP}) \cap \psi(V, \mathsf{AP})$$
$$| \mu x. \psi(V \cup \{x\}, \mathsf{AP}) | \nu x. \psi(V \cup \{x\}, \mathsf{AP})$$

Semantics

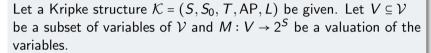


Syntax

Modal μ -calculus is an extension of propositional logic. For some given set of variable symbols \mathcal{V} , formulas in modal μ -calculus over some set of variables with defined values V and some set of atomic proposition AP is are defined as follows (for $p \in \text{AP}$ and $x \in \mathcal{V} \setminus V$):

$$\psi(V, \mathsf{AP}) := \top |\bot| p |x| \Box \psi(V, \mathsf{AP}) | \diamondsuit \psi(V, \mathsf{AP})$$
$$| \psi(V, \mathsf{AP}) \cup \psi(V, \mathsf{AP}) | \psi(V, \mathsf{AP}) \cap \psi(V, \mathsf{AP})$$
$$| \mu x. \psi(V \cup \{x\}, \mathsf{AP}) | \nu x. \psi(V \cup \{x\}, \mathsf{AP})$$

Semantics

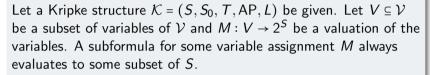


Syntax

Modal μ -calculus is an extension of propositional logic. For some given set of variable symbols \mathcal{V} , formulas in modal μ -calculus over some set of variables with defined values V and some set of atomic proposition AP is are defined as follows (for $p \in \text{AP}$ and $x \in \mathcal{V} \setminus V$):

$$\psi(V, \mathsf{AP}) := \top |\bot| p |x| \Box \psi(V, \mathsf{AP}) | \diamondsuit \psi(V, \mathsf{AP})$$
$$| \psi(V, \mathsf{AP}) \cup \psi(V, \mathsf{AP}) | \psi(V, \mathsf{AP}) \cap \psi(V, \mathsf{AP})$$
$$| \mu x. \psi(V \cup \{x\}, \mathsf{AP}) | \nu x. \psi(V \cup \{x\}, \mathsf{AP})$$

Semantics



Syntax

Modal μ -calculus is an extension of propositional logic. For some given set of variable symbols $\mathcal V$, formulas in modal μ -calculus over some set of variables with defined values V and some set of atomic proposition AP is are defined as follows (for $p \in \mathsf{AP}$ and $x \in \mathcal V \setminus V$):

$$\psi(V, \mathsf{AP}) := \top |\bot| p |x| \Box \psi(V, \mathsf{AP}) | \diamondsuit \psi(V, \mathsf{AP})$$
$$| \psi(V, \mathsf{AP}) \cup \psi(V, \mathsf{AP}) | \psi(V, \mathsf{AP}) \cap \psi(V, \mathsf{AP})$$
$$| \mu x. \psi(V \cup \{x\}, \mathsf{AP}) | \nu x. \psi(V \cup \{x\}, \mathsf{AP})$$

Semantics

$$[\![\bot]\!]_M = \emptyset$$

Syntax

Modal μ -calculus is an extension of propositional logic. For some given set of variable symbols \mathcal{V} , formulas in modal μ -calculus over some set of variables with defined values V and some set of atomic proposition AP is are defined as follows (for $p \in \text{AP}$ and $x \in \mathcal{V} \setminus V$):

$$\psi(V, \mathsf{AP}) := \top |\bot| p |x| \Box \psi(V, \mathsf{AP}) | \diamondsuit \psi(V, \mathsf{AP})$$
$$| \psi(V, \mathsf{AP}) \cup \psi(V, \mathsf{AP}) | \psi(V, \mathsf{AP}) \cap \psi(V, \mathsf{AP})$$
$$| \mu x. \psi(V \cup \{x\}, \mathsf{AP}) | \nu x. \psi(V \cup \{x\}, \mathsf{AP})$$

Semantics

$$[\![\bot]\!]_M = \emptyset$$
$$[\![\top]\!]_M = S$$

Syntax

Modal μ -calculus is an extension of propositional logic. For some given set of variable symbols \mathcal{V} , formulas in modal μ -calculus over some set of variables with defined values V and some set of atomic proposition AP is are defined as follows (for $p \in \text{AP}$ and $x \in \mathcal{V} \setminus V$):

$$\psi(V, \mathsf{AP}) := \top |\bot| p |x| \Box \psi(V, \mathsf{AP}) | \diamondsuit \psi(V, \mathsf{AP})$$
$$| \psi(V, \mathsf{AP}) \cup \psi(V, \mathsf{AP}) | \psi(V, \mathsf{AP}) \cap \psi(V, \mathsf{AP})$$
$$| \mu x. \psi(V \cup \{x\}, \mathsf{AP}) | \nu x. \psi(V \cup \{x\}, \mathsf{AP})$$

Semantics

$$[\![\bot]\!]_M = \emptyset$$

$$[\![\top]\!]_M = S$$

$$[\![p]\!]_M = \{s \in S \mid p \in L(s)\}$$

Syntax

Modal μ -calculus is an extension of propositional logic. For some given set of variable symbols \mathcal{V} , formulas in modal μ -calculus over some set of variables with defined values V and some set of atomic proposition AP is are defined as follows (for $p \in \text{AP}$ and $x \in \mathcal{V} \setminus V$):

$$\psi(V, \mathsf{AP}) := \top |\bot| p |x| \Box \psi(V, \mathsf{AP}) | \diamondsuit \psi(V, \mathsf{AP})$$
$$| \psi(V, \mathsf{AP}) \cup \psi(V, \mathsf{AP}) | \psi(V, \mathsf{AP}) \cap \psi(V, \mathsf{AP})$$
$$| \mu x. \psi(V \cup \{x\}, \mathsf{AP}) | \nu x. \psi(V \cup \{x\}, \mathsf{AP})$$

Semantics

$$[\![\bot]\!]_M = \emptyset$$
$$[\![\top]\!]_M = S$$
$$[\![p]\!]_M = \{s \in S \mid p \in L(s)\}$$
$$[\![x]\!]_M = M(x)$$

Syntax

Modal μ -calculus is an extension of propositional logic. For some given set of variable symbols $\mathcal V$, formulas in modal μ -calculus over some set of variables with defined values V and some set of atomic proposition AP is are defined as follows (for $p \in \mathsf{AP}$ and $x \in \mathcal V \setminus V$):

$$\psi(V, \mathsf{AP}) := \top |\bot| p |x| \Box \psi(V, \mathsf{AP}) | \diamondsuit \psi(V, \mathsf{AP})$$
$$| \psi(V, \mathsf{AP}) \cup \psi(V, \mathsf{AP}) | \psi(V, \mathsf{AP}) \cap \psi(V, \mathsf{AP})$$
$$| \mu x. \psi(V \cup \{x\}, \mathsf{AP}) | \nu x. \psi(V \cup \{x\}, \mathsf{AP})$$

Semantics

$$\begin{bmatrix} \bot \end{bmatrix}_{M} = \emptyset \\
 \begin{bmatrix} \top \end{bmatrix}_{M} = S \\
 \begin{bmatrix} p \end{bmatrix}_{M} = \{ s \in S \mid p \in L(s) \} \\
 \begin{bmatrix} x \end{bmatrix}_{M} = M(x) \\
 [\diamondsuit \psi]_{M} = \{ s \in S \mid \exists s' \in \llbracket \psi \rrbracket_{M}.(s, s') \in T \}$$

Syntax

Modal μ -calculus is an extension of propositional logic. For some given set of variable symbols \mathcal{V} , formulas in modal μ -calculus over some set of variables with defined values V and some set of atomic proposition AP is are defined as follows (for $p \in \text{AP}$ and $x \in \mathcal{V} \setminus V$):

$$\psi(V, \mathsf{AP}) := \top |\bot| p |x| \Box \psi(V, \mathsf{AP}) | \diamondsuit \psi(V, \mathsf{AP})$$
$$| \psi(V, \mathsf{AP}) \cup \psi(V, \mathsf{AP}) | \psi(V, \mathsf{AP}) \cap \psi(V, \mathsf{AP})$$
$$| \mu x. \psi(V \cup \{x\}, \mathsf{AP}) | \nu x. \psi(V \cup \{x\}, \mathsf{AP})$$

Semantics

```
    \begin{bmatrix} \bot \end{bmatrix}_{M} = \emptyset \\
    \begin{bmatrix} \top \end{bmatrix}_{M} = S \\
    \begin{bmatrix} p \end{bmatrix}_{M} = \{ s \in S \mid p \in L(s) \} \\
    \begin{bmatrix} x \end{bmatrix}_{M} = M(x) \\
    \begin{bmatrix} \diamondsuit \psi \end{bmatrix}_{M} = \{ s \in S \mid \exists s' \in \llbracket \psi \rrbracket_{M}.(s, s') \in T \} \\
    \llbracket \Box \psi \rrbracket_{M} = \{ s \in S \mid \forall s' \in S.(s, s') \in T \rightarrow s' \in \llbracket \psi \rrbracket_{M} \}
```

Syntax

Modal μ -calculus is an extension of propositional logic. For some given set of variable symbols \mathcal{V} , formulas in modal μ -calculus over some set of variables with defined values V and some set of atomic proposition AP is are defined as follows (for $p \in \text{AP}$ and $x \in \mathcal{V} \setminus V$):

Semantics

```
    \begin{bmatrix} \bot \end{bmatrix}_{M} = \emptyset \\
    \begin{bmatrix} \top \end{bmatrix}_{M} = S \\
    \begin{bmatrix} p \end{bmatrix}_{M} = \{ s \in S \mid p \in L(s) \} \\
    \begin{bmatrix} x \end{bmatrix}_{M} = M(x) \\
    \begin{bmatrix} \diamondsuit \psi \end{bmatrix}_{M} = \{ s \in S \mid \exists s' \in \llbracket \psi \rrbracket_{M}.(s, s') \in T \} \\
    \llbracket \Box \psi \rrbracket_{M} = \{ s \in S \mid \forall s' \in S.(s, s') \in T \rightarrow s' \in \llbracket \psi \rrbracket_{M} \} \\
    \llbracket \psi \cup \psi' \rrbracket_{M} = \llbracket \psi \rrbracket_{M} \cup \llbracket \psi' \rrbracket_{M}
    \end{bmatrix}
```

Syntax

Modal μ -calculus is an extension of propositional logic. For some given set of variable symbols \mathcal{V} , formulas in modal μ -calculus over some set of variables with defined values V and some set of atomic proposition AP is are defined as follows (for $p \in \text{AP}$ and $x \in \mathcal{V} \setminus V$):

$$\psi(V, \mathsf{AP}) := \top |\bot| p |x| \Box \psi(V, \mathsf{AP}) | \diamondsuit \psi(V, \mathsf{AP})$$
$$| \psi(V, \mathsf{AP}) \cup \psi(V, \mathsf{AP}) | \psi(V, \mathsf{AP}) \cap \psi(V, \mathsf{AP})$$
$$| \mu x. \psi(V \cup \{x\}, \mathsf{AP}) | \nu x. \psi(V \cup \{x\}, \mathsf{AP})$$

Semantics

Syntax

Modal μ -calculus is an extension of propositional logic. For some given set of variable symbols \mathcal{V} , formulas in modal μ -calculus over some set of variables with defined values V and some set of atomic proposition AP is are defined as follows (for $p \in \text{AP}$ and $x \in \mathcal{V} \setminus V$):

$$\psi(V, \mathsf{AP}) := \top |\bot| p |x| \Box \psi(V, \mathsf{AP}) | \diamondsuit \psi(V, \mathsf{AP})$$
$$| \psi(V, \mathsf{AP}) \cup \psi(V, \mathsf{AP}) | \psi(V, \mathsf{AP}) \cap \psi(V, \mathsf{AP})$$
$$| \mu x. \psi(V \cup \{x\}, \mathsf{AP}) | \nu x. \psi(V \cup \{x\}, \mathsf{AP})$$

Semantics

$$\begin{bmatrix} \bot \end{bmatrix}_{M} = \varnothing \\
 \llbracket T \rrbracket_{M} = S \\
 \llbracket p \rrbracket_{M} = \left\{ s \in S \mid p \in L(s) \right\} \\
 \llbracket x \rrbracket_{M} = M(x) \\
 \llbracket \diamondsuit \psi \rrbracket_{M} = \left\{ s \in S \mid \exists s' \in \llbracket \psi \rrbracket_{M}.(s,s') \in T \right\} \\
 \llbracket \Box \psi \rrbracket_{M} = \left\{ s \in S \mid \forall s' \in S.(s,s') \in T \rightarrow s' \in \llbracket \psi \rrbracket_{M} \right\} \\
 \llbracket \psi \cup \psi' \rrbracket_{M} = \llbracket \psi \rrbracket_{M} \cup \llbracket \psi' \rrbracket_{M} \\
 \llbracket \psi \cap \psi' \rrbracket_{M} = \llbracket \psi \rrbracket_{M} \cap \llbracket \psi' \rrbracket_{M} \\
 \llbracket \mu X.\psi \rrbracket_{M} = \cup_{i=0}^{\infty} \llbracket \mu^{i} X.\psi \rrbracket_{M} \\
 \text{for } \mu^{0} X.\psi = \varnothing \text{ and } \\
 \mu^{i} X.\psi = \llbracket \psi \rrbracket_{M \cup \left\{ X \mapsto \llbracket \mu^{i-1} X.\psi \rrbracket \right\}} \text{ for } i > 0$$

Syntax

Modal μ -calculus is an extension of propositional logic. For some given set of variable symbols \mathcal{V} , formulas in modal μ -calculus over some set of variables with defined values V and some set of atomic proposition AP is are defined as follows (for $p \in \text{AP}$ and $x \in \mathcal{V} \setminus V$):

$$\psi(V, \mathsf{AP}) := \top |\bot| p |x| \Box \psi(V, \mathsf{AP}) | \diamondsuit \psi(V, \mathsf{AP})$$
$$| \psi(V, \mathsf{AP}) \cup \psi(V, \mathsf{AP}) | \psi(V, \mathsf{AP}) \cap \psi(V, \mathsf{AP})$$
$$| \mu x. \psi(V \cup \{x\}, \mathsf{AP}) | \nu x. \psi(V \cup \{x\}, \mathsf{AP})$$

Semantics

$$\begin{bmatrix} \bot \end{bmatrix}_{M} = \varnothing \\
 \llbracket T \rrbracket_{M} = S \\
 \llbracket p \rrbracket_{M} = \left\{ s \in S \mid p \in L(s) \right\} \\
 \llbracket x \rrbracket_{M} = M(x) \\
 \llbracket \diamondsuit \psi \rrbracket_{M} = \left\{ s \in S \mid \exists s' \in \llbracket \psi \rrbracket_{M}.(s,s') \in T \right\} \\
 \llbracket \Box \psi \rrbracket_{M} = \left\{ s \in S \mid \forall s' \in S.(s,s') \in T \rightarrow s' \in \llbracket \psi \rrbracket_{M} \right\} \\
 \llbracket \psi \cup \psi' \rrbracket_{M} = \llbracket \psi \rrbracket_{M} \cup \llbracket \psi' \rrbracket_{M} \\
 \llbracket \psi \cap \psi' \rrbracket_{M} = \llbracket \psi \rrbracket_{M} \cap \llbracket \psi' \rrbracket_{M} \\
 \llbracket \psi \cap \psi' \rrbracket_{M} = \llbracket \psi \rrbracket_{M} \cap \llbracket \psi' \rrbracket_{M} \\
 \llbracket \psi \cap \psi' \rrbracket_{M} = \llbracket \psi \rrbracket_{M} \cap \llbracket \psi' \rrbracket_{M} \\
 \llbracket \psi \cap \psi' \rrbracket_{M} = \llbracket \psi \Pi_{M} \cap \llbracket \psi' \Pi_{M} \\
 \llbracket \psi \cap \psi' \Pi_{M} = \llbracket \psi \Pi_{M} \cap \llbracket \psi' \Pi_{M} \\
 \llbracket \psi \cap \psi' \Pi_{M} = \llbracket \psi \Pi_{M} \cap \llbracket \psi' \Pi_{M} \\
 \llbracket \psi \cap \psi' \Pi_{M} = \llbracket \psi \Pi_{M} \cap \llbracket \psi' \Pi_{M} \\
 \llbracket \psi \cap \psi' \Pi_{M} = \llbracket \psi \Pi_{M} \cap \llbracket \psi' \Pi_{M} \\
 \llbracket \psi \cap \psi' \Pi_{M} = \llbracket \psi \Pi_{M} \cap \llbracket \psi' \Pi_{M} \\
 \llbracket \psi \cap \psi' \Pi_{M} = \llbracket \psi \Pi_{M} \cap \llbracket \psi' \Pi_{M} \\
 \llbracket \psi \cap \psi' \Pi_{M} = \llbracket \psi \Pi_{M} \cap \llbracket \psi' \Pi_{M} \\
 \llbracket \psi \cap \psi' \Pi_{M} = \llbracket \psi \Pi_{M} \cap \llbracket \psi' \Pi_{M} \\
 \llbracket \psi \cap \psi' \Pi_{M} = \llbracket \psi \Pi_{M} \cap \llbracket \psi' \Pi_{M} \\
 \llbracket \psi \cap \psi' \Pi_{M} = \llbracket \psi \Pi_{M} \cap \llbracket \psi' \Pi_{M} \\
 \llbracket \psi \cap \psi' \Pi_{M} = \llbracket \psi \Pi_{M} \cap \llbracket \psi' \Pi_{M} \\
 \llbracket \psi \cap \psi' \Pi_{M} = \llbracket \psi \Pi_{M} \cap \llbracket \psi' \Pi_{M} \\
 \llbracket \psi \cap \psi' \Pi_{M} = \llbracket \psi \Pi_{M} \cap \llbracket \psi' \Pi_{M} \\
 \llbracket \psi \cap \psi' \Pi_{M} = \llbracket \psi \Pi_{M} \cap \llbracket \psi' \Pi_{M} \\
 \llbracket \psi \cap \psi' \Pi_{M} = \llbracket \psi \Pi_{M} \cap \llbracket \psi' \Pi_{M} \\
 \llbracket \psi \cap \psi' \Pi_{M} = \llbracket \psi \Pi_{M} \cap \llbracket \psi' \Pi_{M} \\
 \llbracket \psi \cap \psi' \Pi_{M} = \llbracket \psi \Pi_{M} \cap \llbracket \psi' \Pi_{M} \\
 \llbracket \psi \cap \psi' \Pi_{M} = \llbracket \psi \Pi_{M} \cap \llbracket \psi' \Pi_{M} \\
 \llbracket \psi \cap \psi' \Pi_{M} = \llbracket \psi \Pi_{M} \cap \llbracket \psi \Pi_{M} \cap \llbracket \psi' \Pi_{M} \\
 \llbracket \psi \cap \psi' \Pi_{M} = \llbracket \psi \Pi_{M} \cap \llbracket \psi \Pi_{M} \cap \llbracket \psi \Pi_{M} \cap \llbracket \psi' \Pi_{M} \\
 \llbracket \psi \Pi_{M} \cap \llbracket \psi \Pi_{M}$$

Syntax

Modal μ -calculus is an extension of propositional logic. For some given set of variable symbols \mathcal{V} , formulas in modal μ -calculus over some set of variables with defined values V and some set of atomic proposition AP is are defined as follows (for $p \in \text{AP}$ and $x \in \mathcal{V} \setminus V$):

$$\psi(V, \mathsf{AP}) := \top |\bot| p |x| \Box \psi(V, \mathsf{AP}) | \diamondsuit \psi(V, \mathsf{AP})$$
$$| \psi(V, \mathsf{AP}) \cup \psi(V, \mathsf{AP}) | \psi(V, \mathsf{AP}) \cap \psi(V, \mathsf{AP})$$
$$| \mu x. \psi(V \cup \{x\}, \mathsf{AP}) | \nu x. \psi(V \cup \{x\}, \mathsf{AP})$$

Semantics

Let a Kripke structure $\mathcal{K}=(S,S_0,T,\mathsf{AP},L)$ be given. Let $V\subseteq\mathcal{V}$ be a subset of variables of \mathcal{V} and $M:V\to 2^S$ be a valuation of the variables. A subformula for some variable assignment M always evaluates to some subset of S. We define the semantics of a subformula in $modal\ \mu\text{-}calculus$ (for $p\in\mathsf{AP}$ and $X\in\mathcal{V}\setminus V$): as follows:

Closed formulas

A *closed* mu-calculus formula is defined over the variables $V = \emptyset$ and hence can be evaluated on a Kripke structures. It can thus denote a specification.

Using fixed point equation

We can formalize these rules as follows:

$AX\psi$	$\Box \psi$
$\mathbf{EX}\psi$	$\Diamond \psi$
$oldsymbol{AG}\psi$	$\nu X.\psi \cap \Box X$
$lue{EG}\psi$	$\nu X.\psi \cap \diamondsuit X$
lacksquare	$\mu X.\psi \cup \Box X$
$lue{EF\psi}$	$\mu X.\psi \cup \diamondsuit X$
$\mathbf{A}(\psi \mathcal{U} \psi')$	$\mu X.\psi' \cup (\psi \cap \Box X)$
$E(\psi \mathcal{U} \psi')$	$\mu X.\psi' \cup (\psi \cap \diamondsuit X)$
$A(\psiR\psi')$	$\nu X.\psi' \cap (\psi \cup \Box X)$
$E(\psiR\psi')$	$\nu X.\psi' \cap (\psi \cup \diamondsuit X)$

Summary / List of Concepts

- Model checking CTL by labeling Kripke structure states
- Simple algorithms for some sub-formulas
- Modal μ -calculus (a very short version!)
- Translating CTL to modal μ -calculus

References I