Model Checking and Games

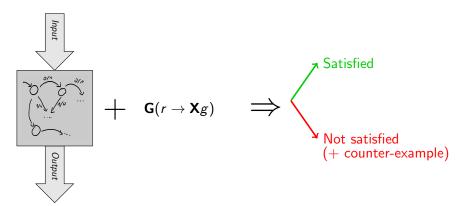
Part VIII - Reactive Synthesis & Games

Rüdiger Ehlers, Clausthal University of Technology

September 2019

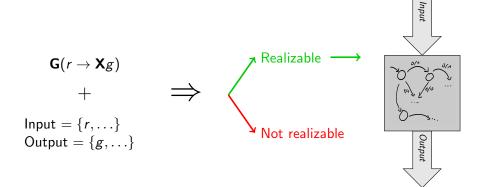
Beyond model checking: Synthesis

Verification:



Beyond model checking: Synthesis

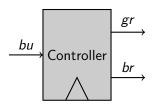
Synthesis:



Synthesis of reactive systems - example

Atomic propositions

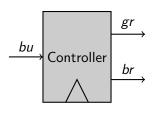
- $\bullet \mathsf{AP}_I = \{ button \}$
- $\bullet \mathsf{AP}_O = \{grind, brew\}$



Synthesis of reactive systems - example

Atomic propositions

- $\bullet \mathsf{AP}_I = \{ \mathsf{button} \}$
- \bullet AP_O = {grind, brew}



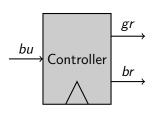
A run of the system

$$\rho = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \dots$$

Synthesis of reactive systems - example

Atomic propositions

- \bullet AP_I = {button}
- \bullet AP_O = {grind, brew}



A run of the system

$$\rho = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \dots$$

Specification

Whenever the user presses the button, the grinding unit should be activated for the next 2 steps. After that, the grinding module should be inactive while the brewing unit brews for the next 3 steps.

Synthesis of reactive systems - formalizing the example

Informal specification

Whenever the user presses the button, the grinding unit should be activated for the next 2 steps. After that, the grinding module should be inactive while the brewing unit brews for the next 3 steps.

Synthesis of reactive systems - formalizing the example

Informal specification

Whenever the user presses the button, the grinding unit should be activated for the next 2 steps. After that, the grinding module should be inactive while the brewing unit brews for the next 3 steps.

Formal specification in linear-time temporal logic (LTL)

Synthesis of reactive systems - analyzing the example

Formal specification in linear-time temporal logic (LTL)

A surprise

The specification is unrealizable.

Example:

$$\rho = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ ??? \\ 1 \end{pmatrix} \dots$$

5

Fixing the specification

Idea

Let us rewrite the specification such that button presses are only considered if the machine did not do anything previously

New formal specification in linear-time temporal logic (LTL)

$$\begin{aligned} \textbf{G}((\neg \textit{grind} \land \neg \textit{brew}) \rightarrow \textbf{X}(\textit{button} \rightarrow (\textit{grind} \land \textbf{X} \textit{grind} \land \textbf{XX}(\textit{brew} \land \neg \textit{grind}) \land \textbf{XXX}(\textit{brew} \land \neg \textit{grind})))) \end{aligned}$$

Fixing the specification

Idea

Let us rewrite the specification such that button presses are only considered if the machine did not do anything previously

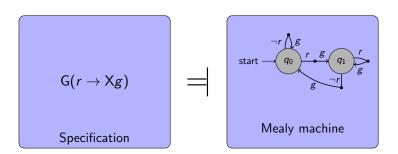
New formal specification in linear-time temporal logic (LTL)

$$\begin{aligned} \textbf{G}((\neg \textit{grind} \land \neg \textit{brew}) \rightarrow \textbf{X}(\textit{button} \rightarrow (\textit{grind} \land \textbf{X} \textit{grind} \land \textbf{XX}(\textit{brew} \land \neg \textit{grind}) \land \textbf{XXX}(\textit{brew} \land \neg \textit{grind})))) \end{aligned}$$

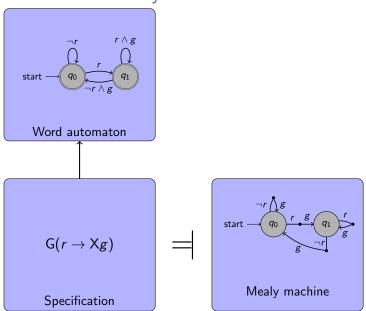
Result

This one is realizable \rightarrow Demo!

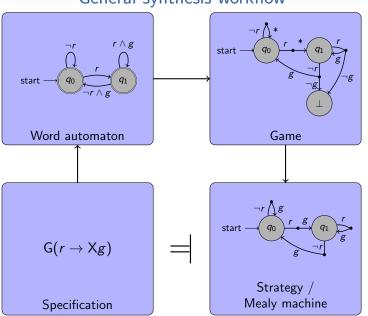
General synthesis workflow



General synthesis workflow



General synthesis workflow



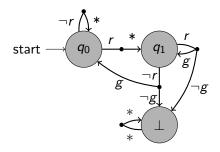
Games

Definition

Every player in a (two-player) game $\mathcal{G}=(V_0,V_1,\Sigma_0,\Sigma_1,E_0,E_1,v_0,\mathcal{F})$ has:

- Positions
- Actions
- Transitions
- A goal

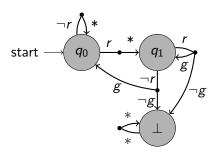
Additionally, there is some initial position.



Strategies

One player is the **system player**, whereas the other player is the **environment player**.

If player $p \in \{0,1\}$ has a **stategy** to win, then she can enforce to win by playing the strategy. We say that player p wins the game in such a case.

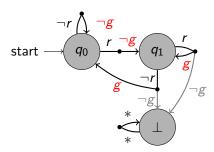


This is a Mealy Machine!

Strategies

One player is the **system player**, whereas the other player is the **environment player**.

If player $p \in \{0,1\}$ has a **stategy** to win, then she can enforce to win by playing the strategy. We say that player p wins the game in such a case.

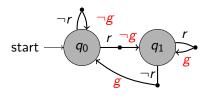


This is a Mealy Machine!

Strategies

One player is the **system player**, whereas the other player is the **environment player**.

If player $p \in \{0,1\}$ has a **stategy** to win, then she can enforce to win by playing the strategy. We say that player p wins the game in such a case.

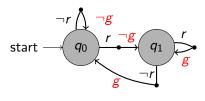


This is a Mealy Machine! This is a Mealy Machine!

Strategies

One player is the **system player**, whereas the other player is the **environment player**.

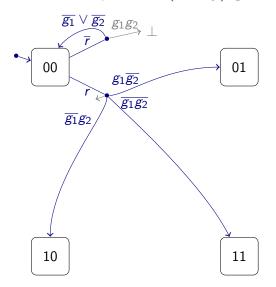
If player $p \in \{0,1\}$ has a **stategy** to win, then she can enforce to win by playing the strategy. We say that player p wins the game in such a case.

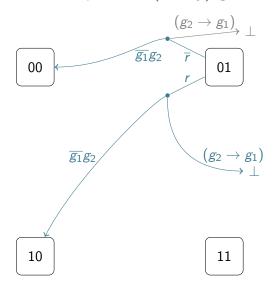


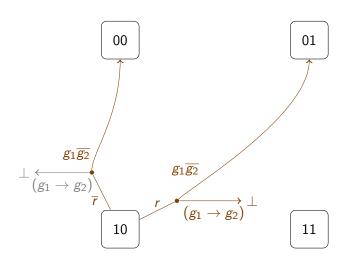
This is a Mealy Machine!

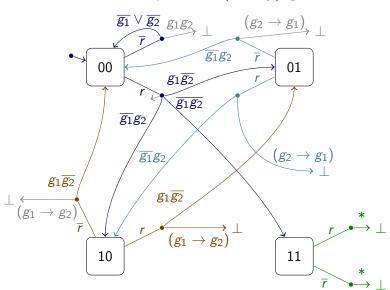
Strategies in synthesis games

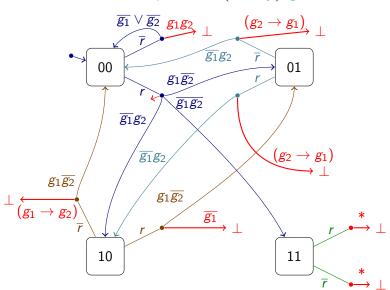
In games that correspond to a specification, winning strategies for the system player represent Mealy (or Moore) machines that satisfy the specification.

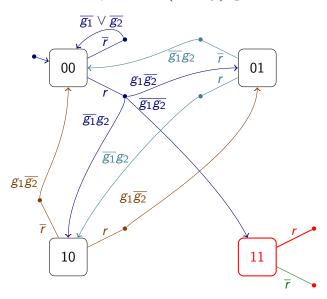


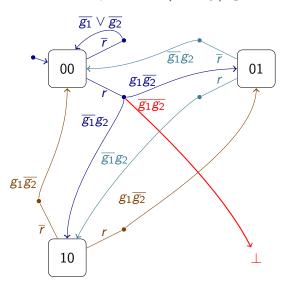


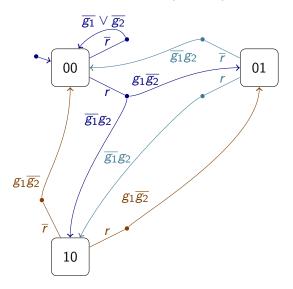


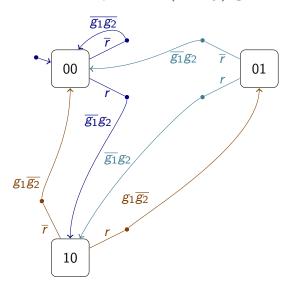








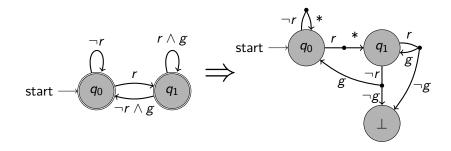




Main question

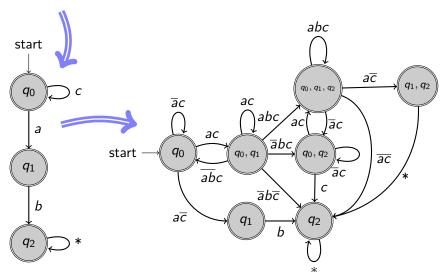
Ok, so how do we build a synthesis game?

Building safety games from deterministic safety automata

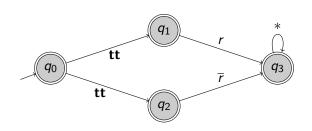


Building deterministic safety automata

$$\psi = c \, \mathcal{U} \, (\mathsf{a} \wedge \mathsf{X} \, \mathsf{b}) \vee \mathsf{G} \mathsf{c}$$



So why do we need determinization (1/3)?

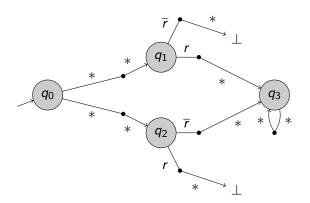


Specification:
$$\mathbf{X}r \vee \mathbf{X} \neg r$$

 $\mathsf{AP}_I = \{r\}, \ \mathsf{AP}_O = \{g\}$

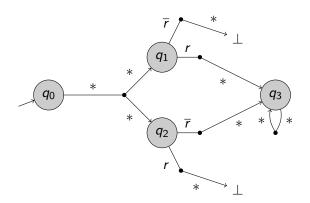
So why do we need determinization (2/3)?

Case 1: The environment player resolves the nondeterminism

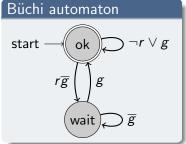


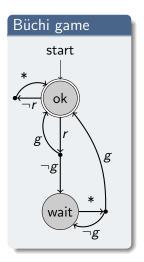
So why do we need determinization (2/3)?

Case 2: The system player resolves the nondeterminism



The non-safety, deterministic Büchi case





Deterministic vs. non-deterministic Büchi automata

Properties of Büchi automata

- For every LTL formula, there exists a non-deterministic Büchi automaton
- For some LTL formulas, there do not exist deterministic Büchi automata

Problem

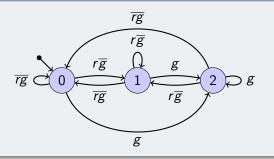
The automaton→game construction only works for *deterministic* automata

Solution

Use a richer automaton model/game winning condition: *parity* automata

Parity automata by example (1)

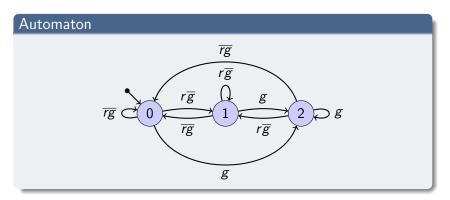
Automaton



Acceptance condition

A deterministic parity word automaton accepts a word if the *highest color* visited infinitely often along the run of the automaton is *even*.

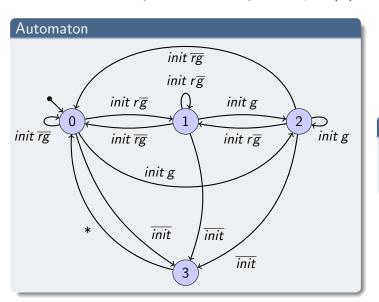
Parity automata by example (1)



Encoded LTL property

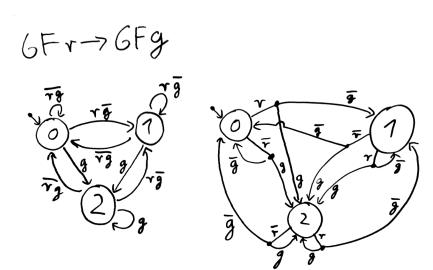
 $\mathbf{GF}r \to \mathbf{GF}g$

Parity automata by example (2)



Spec' $(GFr \rightarrow GFg)$ $\land FG init$

Parity automata and games



Complexity considerations – Safety & full LTL

Overall complexity (time and space)

- Specification → non-deterministic automaton: exponential
- Non-deterministic aut. → deterministic aut.: exponential
- Building and solving the game: polynomial-time for simple specification classes, does not add an exponent for full LTL.
- \rightarrow Overall: doubly-exponential

Complexity considerations – Safety & full LTL

Overall complexity (time and space)

- Specification → non-deterministic automaton: exponential
- Non-deterministic aut. → deterministic aut.: exponential
- Building and solving the game: polynomial-time for simple specification classes, does not add an exponent for full LTL.
- → Overall: doubly-exponential

Can we do better?

Not for linear temporal logic: **2EXPTIME-complete** (Pnueli and Rosner, 1989)

The classical synthesis construction in practice

Nowadays...

..we have pretty good LTL-to-parity tools that work with *reasonably-sized* specifications. Using them, only parity game solving remains.

But what is reasonably-sized? – Positive example

```
./ltl2dpa --state-acceptance "G(process1 -> (process1 U (spitout1 U ready1))) & (F G calibi | G F faili) & G(calibi -> ! process1) & (G F ready1 -> G F calibi)" \rightarrow 35 \text{ states. 7 colors. 1.617s computation time}
```

Tool used in this example: owl (Esparza et al., 2017), https://www7.in.tum.de/~sickert/projects/owl/

The classical synthesis construction in practice

Nowadays...

..we have pretty good LTL-to-parity tools that work with *reasonably-sized* specifications. Using them, only parity game solving remains.

But what is reasonably-sized? – Positive example

```
./ltl2dpa --state-acceptance "G(process1 -> (process1 U (spitout1 U ready1))) & (F G calib1 | G F fail1) & G(calib1 -> ! process1) & (G F ready1 -> G F calib1)"
```

ightarrow 35 states, 7 colors, 1.617s computation time

But what is reasonably-sized? – Half-negative example

```
./ltl2dpa --state-acceptance "G(process1 -> (process1 U (spitout1 U ready1))) & (F G calib1 | G F fail1) & G(calib1 -> ! process1) & (G F ready1 -> G F calib1) & G(process2 -> (process2 U (spitout2 U ready2))) & (F G calib2 | G F fail2) & G(calib2 -> ! process2) & (G F ready2 -> G F calib2) & G(ready1 -> X process2)"
```

→ 54021 states, 19 colors (1 GB automaton file!), after 9m24.260s using 4.3 GB of RAM

What happens if we have a parity automaton?

Final synthesis step: Parity game solving

Complexity of some algorithms:

- $\approx O(n^c)$ (McNaughton, 1993; Zielonka, 1998)
- $\approx O(cmn^{\lceil c/2 \rceil})$ (Jurdzinski, 2000)
- $\bullet \approx O(n^{\sqrt{n}})$ (Jurdzinski et al., 2008)
- $\approx O(cmn^{\lceil c/3 \rceil})$ (Schewe, 2017)

Observation

Parity game solving can easily be a bottleneck

The central question of practical reactive synthesis

But how can we do this?

Answer

By exploiting some properties of the problem such as:

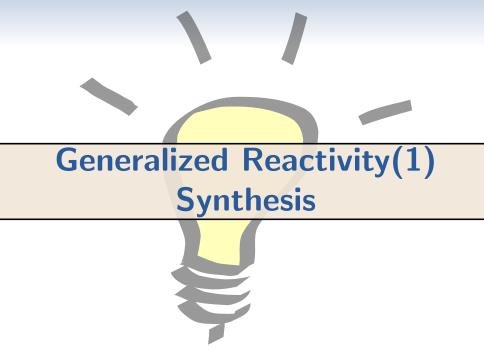
- A small synthesized implementation
- A simple structure of the *specification*
- The *regularity* of the computed synthesis games

But how can we do this?

Answer

By exploiting some properties of the problem such as:

- A small synthesized implementation
 - ightarrow Bounded Synthesis
- A simple structure of the *specification*
 - \rightarrow GR(1) Synthesis
- The regularity of the computed synthesis games
 - \rightarrow Symbolic Synthesis



GR(1) Synthesis (Bloem et al., 2012) – Main idea (1)

What are we willing to trade?

...the full expressivity of LTL!

GR(1) Synthesis (Bloem et al., 2012) - Main idea (1)

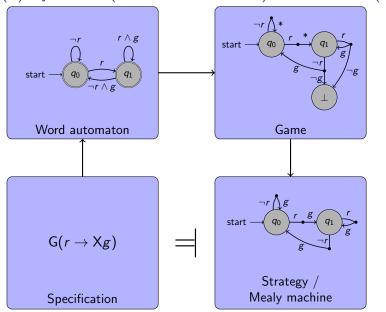
What are we willing to trade?

...the full expressivity of LTL!

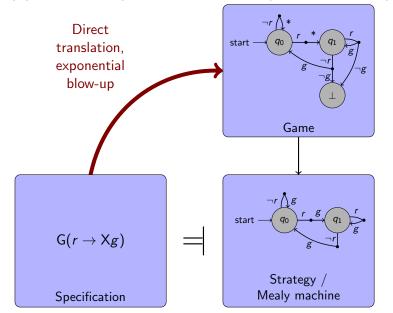
What do we want?

A reduction in time complexity from doubly-exponential to singly exponential!

GR(1) Synthesis (Bloem et al., 2012) - Main idea (2)



GR(1) Synthesis (Bloem et al., 2012) - Main idea (2)



GR(1) – What should be supported?

Computation model

We choose a Mealy-type computation model

GR(1) – What should be supported?

Computation model

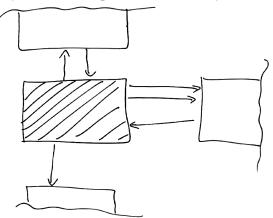
We choose a Mealy-type computation model

Focus

A specification consists of assumptions and guarantees, each of which are either

- initialization properties,
- basic safety properies, or
- basic liveness properties.

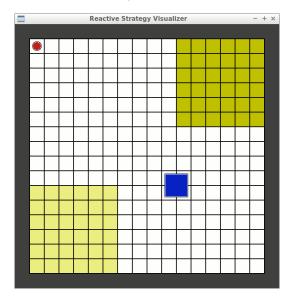
Assumptions and guarantees in specifications



Specification shape

$$\left(\bigwedge \mathsf{Assumptions}\right) \to \left(\bigwedge \mathsf{Guarantees}\right)$$

Demo – Assumptions & Guarantees

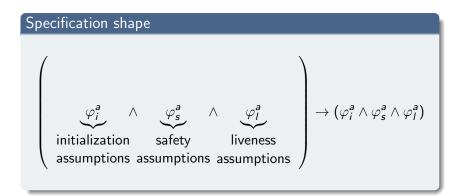


Specification shape

$$\left(\bigwedge\mathsf{Assumptions}\right)\to\left(\bigwedge\mathsf{Guarantees}\right)$$

Specification shape

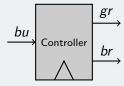
$$\left(\varphi_{i}^{a} \wedge \varphi_{s}^{a} \wedge \varphi_{l}^{a}\right) \rightarrow \left(\varphi_{i}^{g} \wedge \varphi_{s}^{g} \wedge \varphi_{l}^{g}\right)$$



$$(\varphi_i^g \wedge \varphi_s^g \wedge \varphi_l^g) \rightarrow \begin{pmatrix} \varphi_i^g & \wedge & \varphi_s^g & \wedge & \varphi_l^g \\ & & \text{initialization safety liveness} \\ & & \text{guarantees guarantees guarantees} \end{pmatrix}$$

Specification parts: Initialization assumptions

Controller shape – Coffee machine example



Here, $AP_I = \{bu\}$, $AP_O = \{gr, br\}$

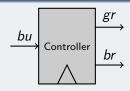
Initialization assumptions

These are properties without a temporal operator, only over AP_I . Example:

¬bu

Specification parts: Safety assumptions

Controller shape – Coffee machine example



Here, $AP_I = \{bu\}$, $AP_I = \{gr, br\}$

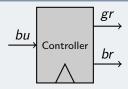
Safety assumptions

These are properties of the form $\mathbf{G}(\psi)$ where ψ is a Boolean formula over $\mathsf{AP}_I \cup \mathsf{AP}_O \cup \{\mathbf{X} \ y \mid y \in \mathsf{AP}_I\}$. Examples:

- $G(bu \rightarrow X \neg bu)$
- $\mathbf{G}((gr \lor br) \to \mathbf{X} \neg bu)$

Specification parts: Liveness assumptions

Controller shape - Coffee machine example



Here, $AP_I = \{bu\}$, $AP_I = \{gr, br\}$

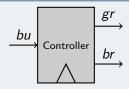
Liveness assumptions

These are properties of the form $\mathbf{GF}(\psi)$ where ψ is a Boolean formula over $\mathsf{AP}_I \cup \mathsf{AP}_O \cup \{\mathbf{X}\ y \mid y \in \mathsf{AP}_I \cup \mathsf{AP}_O\}$. Examples:

- **GF**(*bu*)
- $\mathbf{GF}(\neg br \wedge \neg gr \wedge \mathbf{X}bu)$

Specification parts: Initialization guarantees

Controller shape - Coffee machine example



Here, $AP_I = \{bu\}$, $AP_I = \{gr, br\}$

Initialization guarantees

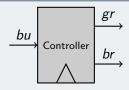
These are properties without a temporal operator, only over $AP_I \cup AP_O$.

Example:

- $\neg gr \wedge \neg br$
- $\neg bu \rightarrow (\neg gr \land \neg br)$

Specification parts: Safety guarantees

Controller shape – Coffee machine example



Here, $AP_I = \{bu\}$, $AP_I = \{gr, br\}$

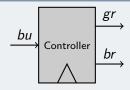
Safety guarantees

These are properties of the form $\mathbf{G}(\psi)$ where ψ is a Boolean formula over $\mathsf{AP}_I \cup \mathsf{AP}_O \cup \{\mathbf{X}\ y \mid y \in \mathsf{AP}_I \cup \mathsf{AP}_O\}$. Examples:

- $G(gr \rightarrow X \neg gr)$
- $\mathbf{G}(gr \wedge \mathbf{X}bu \rightarrow \mathbf{X}gr)$

Specification parts: Liveness guarantees

Controller shape - Coffee machine example



Here, $AP_I = \{bu\}$, $AP_I = \{gr, br\}$

Liveness guarantees

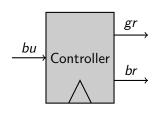
These are properties of the form $\mathbf{GF}(\psi)$ where ψ is a Boolean formula over $\mathsf{AP}_I \cup \mathsf{AP}_O \cup \{\mathbf{X}\ y \mid y \in \mathsf{AP}_I \cup \mathsf{AP}_O\}$. Examples:

- $\mathbf{GF}(gr \wedge \mathbf{X}br)$
- **GF**(bu ∨ br)

GR(1) (Mealy) execution semantics step-by-step

Atomic propositions

- $AP_I = \{button\}$
- $AP_O = \{grind, brew\}$



A run of the system

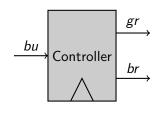
$$ho = \left(\begin{array}{c} \\ \end{array}
ight)$$

GR(1) (Mealy) execution semantics step-by-step

Atomic propositions

- $AP_I = \{button\}$
- $AP_O = \{grind, brew\}$

A run of the system



Step 1

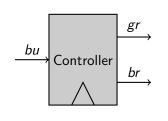
The environment selects values for AP_I that satisfy the environment initialization assumptions

GR(1) (Mealy) execution semantics step-by-step

Atomic propositions

- $AP_I = \{button\}$
- $AP_O = \{grind, brew\}$

A run of the system



Step 2

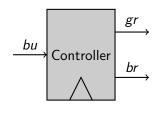
The system selects values for AP_O such that the first element of ρ satisfies all initialization guarantees

Atomic propositions

- $AP_I = \{button\}$
- $AP_O = \{grind, brew\}$

A run of the system

$$\rho = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$



Step $2 \cdot i + 1$

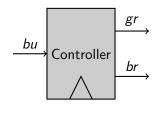
The environment selects values for AP_I such that the last element of ρ and the new values for AP_I satisfy the environment safety assumptions

Atomic propositions

- $AP_I = \{button\}$
- $AP_O = \{grind, brew\}$

A run of the system

$$\rho = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$



Step $2 \cdot i + 2$

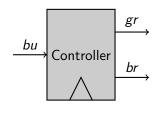
The system selects values for AP_O such that the last element of ρ and the new values for AP_I and AP_O satisfy the system safety guarantees

Atomic propositions

- $AP_I = \{button\}$
- $AP_O = \{grind, brew\}$

A run of the system

$$\rho = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$



Step $2 \cdot i + 1$

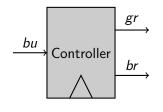
The environment selects values for AP_I such that the last element of ρ and the new values for AP_I satisfy the environment safety assumptions

Atomic propositions

- $AP_I = \{button\}$
- $AP_O = \{grind, brew\}$

A run of the system

$$\rho = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$



Step $2 \cdot i + 2$

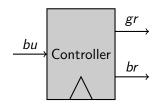
The system selects values for AP_O such that the last element of ρ and the new values for AP_I and AP_O satisfy the system safety guarantees

Atomic propositions

- $AP_I = \{button\}$
- $AP_O = \{grind, brew\}$

A run of the system

$$\rho = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \dots$$



And so on...

This process continues ad infinitum.

GR(1) Semantics – Who wins the game?

Finitary winning

If at some point, one of the players does not stick to the rules of the game, then the player doing so first **loses** the game.

Otherwise: Infinitary winning

If both players play according to the rules, then the system player wins if and only if the winning condition

$$\varphi_{\rm I}^{\rm a} \to \varphi_{\rm I}^{\rm g}$$

is fulfilled.

Let's explore the semantics by example (1)

GR(1) synthesis tool used

```
slugs - Live web-based version available at
http://webslugs.ruediger-ehlers.de
```

```
Specification
```

```
[INPUT]
bu
[OUTPUT]
Ьr
gr
[ENV_INIT]
[SYS_INIT]
gr <-> bu
  br
```

Let's explore the semantics by example (2)

Added specification parts

```
[SYS_TRANS]
br' <-> gr
gr' -> bu'

[ENV_TRANS]
bu' -> !gr & !br
```

Let's explore the semantics by example (2)

Added specification parts

```
[SYS_TRANS]
br' <-> gr
gr' -> bu'

[ENV_TRANS]
bu' -> !gr & !br
```

Observation

The system can now make coffee, but does not have to.

Let's explore the semantics by example (3)

Added specification parts

[SYS_LIVENESS] br

Let's explore the semantics by example (3)

Added specification parts

[SYS_LIVENESS] br

Observation

Since the system cannot enforce a button press, it now loses

Let's explore the semantics by example (4)

Added specification parts

[ENV_LIVENESS] bu

Let's explore the semantics by example (4)

Added specification parts

[ENV_LIVENESS] bu

Observation

Now everything works as expected!

Beware the semantics of GR(1) – Part I

Note

There is a discrepancy between the presentation of a $\mathsf{GR}(1)$ problem in the form

$$\left(\bigwedge\mathsf{Assumptions}\right)\to\left(\bigwedge\mathsf{Guarantees}\right)$$

and the step-by-step execution explained above.

Beware the semantics of GR(1) – Part I

Note

There is a discrepancy between the presentation of a $\mathsf{GR}(1)$ problem in the form

$$\left(\bigwedge\mathsf{Assumptions}\right)\to\left(\bigwedge\mathsf{Guarantees}\right)$$

and the step-by-step execution explained above.

Example (1)

$$(\mathsf{GF} r \wedge \mathsf{G} \neg r) \rightarrow (\mathsf{G} g \wedge \mathsf{G} \neg g)$$

Beware the semantics of GR(1) – Part II

Note

There is a discrepancy between the presentation of a $\mathsf{GR}(1)$ problem in the form

$$\left(\bigwedge\mathsf{Assumptions}\right)\to\left(\bigwedge\mathsf{Guarantees}\right)$$

and the step-by-step execution explained above.

Example (2)

$$(\mathsf{G}r \wedge \mathsf{G} \neg r) \rightarrow (\mathsf{G}\mathsf{X}g \wedge \mathsf{G}\mathsf{X} \neg g)$$

Syntactic Extension to GR(1) – Counters

Using counters

To simplify working with cyber-physical systems, we will syntactically extend the set of GR(1) specifications by *counter variables*, which are actually binary-encoded into the atomic propositions.

Note

In LTL, this does not make sense:

$$G(counter \leq X(counter) + 7)$$

But some synthesis tools such as slugs and TuLiP (Wongpiromsarn et al., 2011) support this anyway.

Syntactic Extension to GR(1) – Counters in Slugs

Version with counters [INPUT] a:0...15 [OUTPUT] b [ENV_INIT] a >= 3[ENV_TRANS] $a' \le a + 8$

```
Version without counters
[INPUT]
a@0.0.15
a@1
a@2
a@3
[OUTPUT]
b
[ENV_INIT]
a@0.0.15 & a@1 | a@2 | a@3
[ENV_TRANS]
```

Slugs – Example with counters

```
[INPUT]
u
[OUTPUT]
c:0...10
[SYS_INIT]
c = 0
[SYS_TRANS]
u' -> c' = c+1
```

How GR(1) synthesis works

Step 1: Building a synthesis game

Basic idea

The state space of the game is $2^{AP_I \cup AP_O}$.

- The initialization assumptions and guarantees are used to define the set of initial states of the game.
- The safety assumptions and guarantees are used to define the transition structure of the game
- The liveness assumptions and guarantees are used to define the winning condition of the game.

Step 1: Building a synthesis game

Basic idea

The state space of the game is $2^{AP_I \cup AP_O}$.

- The initialization assumptions and guarantees are used to define the set of initial states of the game.
- The safety assumptions and guarantees are used to define the transition structure of the game
- The liveness assumptions and guarantees are used to define the winning condition of the game.

Central property of the game

 \rightarrow size is exponential in $|AP_I \cup AP_O|$.

Example

Specification

$$(\mathsf{GF} x \land \mathsf{G}(\neg x \lor \neg \mathsf{X}\, x)) \to (\mathsf{G}((\neg x \land y) \to \mathsf{X}\, x) \land \mathsf{GFX} y \land (x \leftrightarrow y))$$

Example

Specification

$$(\mathsf{GF} x \land \mathsf{G}(\neg x \lor \neg \mathsf{X} \, x)) \to (\mathsf{G}((\neg x \land y) \to \mathsf{X} \, x) \land \mathsf{GFX} y \land (x \leftrightarrow y))$$

Breaking the specification into pieces

- Initialization assumptions: none
- Safety assumptions: $\mathbf{G}(\neg x \lor \neg \mathbf{X} x)$
- Liveness assumptions: GFx
- Initialization guarantees: $(x \leftrightarrow y)$
- Safety guarantees: $\mathbf{G}((\neg x \land y) \to \mathbf{X} x)$
- Liveness guarantees: GFXy

Building the game

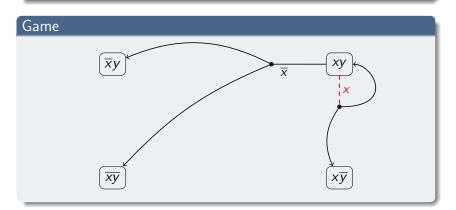
Relevant specification parts for building the game

- Safety assumptions: $\mathbf{G}(\neg x \lor \neg \mathbf{X} x)$
- Safety guarantees: $\mathbf{G}((\neg x \land y) \to \mathbf{X} x)$

Building the game

Relevant specification parts for building the game

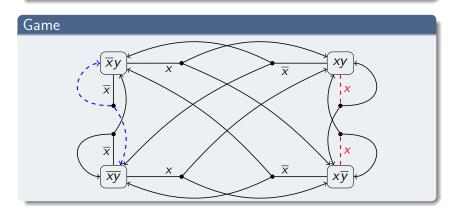
- Safety assumptions: $\mathbf{G}(\neg x \lor \neg \mathbf{X} x)$
- Safety guarantees: $\mathbf{G}((\neg x \land y) \to \mathbf{X} x)$



Building the game

Relevant specification parts for building the game

- Safety assumptions: $\mathbf{G}(\neg x \lor \neg \mathbf{X} x)$
- Safety guarantees: $\mathbf{G}((\neg x \land y) \to \mathbf{X} x)$



Process

Compute the largest set of (winning) game states W such that:

 a state is removed from W if the environment has a (legal) successor state such that all successors are non-winning (or the transition is illegal)

Game $\overline{x}y$ \overline{x} \overline{x} \overline{x} \overline{x} \overline{x} \overline{x} \overline{x}

Process

Compute the largest set of (winning) game states W such that:

 a state is removed from W if the environment has a (legal) successor state such that all successors are non-winning (or the transition is illegal)

Ty </t

Process

Compute the largest set of (winning) game states W such that:

 a state is removed from W if the environment has a (legal) successor state such that all successors are non-winning (or the transition is illegal)

Towards modelling this as a μ -calculus formula

We search for the largest $W \subseteq 2^{AP_I \cup AP_O}$ such that:

$$W = \text{EnfPre}(W),$$

where for every state set $X \subseteq 2^{\mathsf{AP}_I \cup \mathsf{AP}_O}$, we have that $\mathsf{EnfPre}(X)$ contains all $x \in 2^{\mathsf{AP}_I \cup \mathsf{AP}_O}$ such that the system player can enforce that after one move of each player, the play is in a state in X.

Towards modelling this as a μ -calculus formula

To obtain set W, we can compute (for finite-sized games):

$$W_0 = 2^{AP_I \cup AP_O}$$

followed by

$$W_1 = \text{EnfPre}(W_0),$$

$$W_2 = \text{EnfPre}(W_1)$$

and so on, until we reach a fixpoint.

Towards modelling this as a μ -calculus formula

To obtain set W, we can compute (for finite-sized games):

$$W_0 = 2^{AP_I \cup AP_O}$$

followed by

$$W_1 = \text{EnfPre}(W_0),$$

$$W_2 = \text{EnfPre}(W_1)$$

and so on, until we reach a fixpoint.

Modelling as a μ -calculus formula

$$W = \nu X.\mathsf{EnfPre}(X)$$

Solving GR(1) games – Step 2: Reachability game solving

The next step

Now we need to take the winning condition of the GR(1) game into consideration. For our example GR(1) game, this is:

$$(\mathbf{GF}x) \to (\mathbf{GFX}y)$$

Solving GR(1) games – Step 2: Reachability game solving

The next step

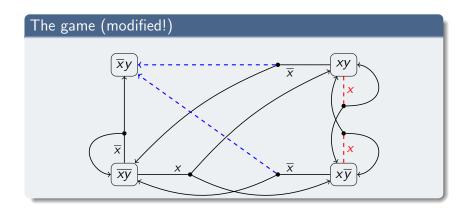
Now we need to take the winning condition of the GR(1) game into consideration. For our example GR(1) game, this is:

$$(GFx) \rightarrow (GFXy)$$

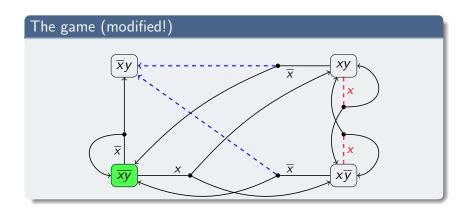
Coming up

Let us have a look at from which states in the game the system player can enforce that eventually a transition is taken along which $\mathbf{X}y$ is satisfied.

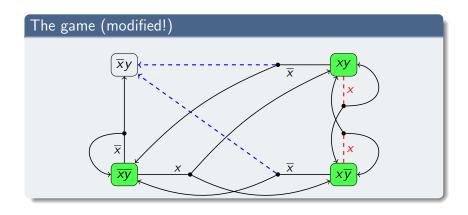
Eventually taking a transition satisfying **X**y



Eventually taking a transition satisfying **X**y



Eventually taking a transition satisfying **X**y



Solving GR(1) games – Step 2: Reachability game solving

New μ -calculus equation for eventually taking goal transition ψ

$$\mu X.X \cup \mathsf{EnfPre}(X' \cup \psi)$$

...using the extension of EnfPre to range over transition instead of states, where a dash indicates a state reached after a transition.

Solving GR(1) games – Step 3: Environment goals

Next step

Now the system only needs to reach the next goal under the assumption that the environment fulfils its liveness assumptions:

$$(\mathbf{GF}x) \to (\mathbf{FX}y)$$

Solving GR(1) games – Step 3: Environment goals

Next step

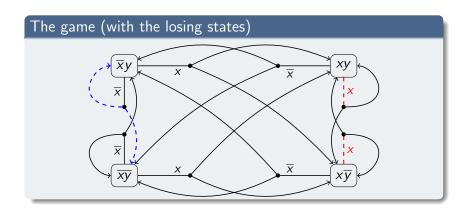
Now the system only needs to reach the next goal under the assumption that the environment fulfils its liveness assumptions:

$$(\mathbf{GF}x) \to (\mathbf{FX}y)$$

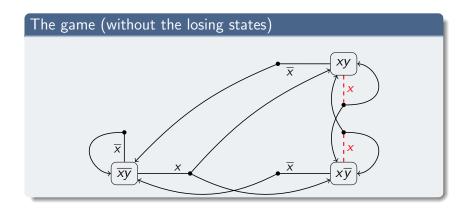
Idea

The system now only needs to make progress towards its *goal* whenever the environment reaches one of its *goals*.

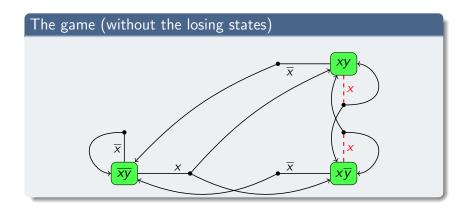
Working on $(\mathbf{GF}x) \rightarrow (\mathbf{FX}y)$



Working on $(\mathbf{GF}x) \to (\mathbf{FX}y)$



Working on $(\mathbf{GF}x) \rightarrow (\mathbf{FX}y)$



Solving GR(1) games – Step 3: Environment goals

New μ -calculus formula, first step

Idea: In every step of the system's strategy execution, the strategy either (1) waits for the environment to reach a goal or (2) moves closer towards its own goal:

$$\mu Y$$
.EnfPre $(\psi^g \cup Y') \cup \nu X$.EnfPre $((X' \cap \neg \psi^a) \cup Y')$

Solving GR(1) games – Step 3: Environment goals

New μ -calculus formula, first step

Idea: In every step of the system's strategy execution, the strategy either (1) waits for the environment to reach a goal or (2) moves closer towards its own goal:

$$\mu$$
 Y.EnfPre $(\psi^g \cup Y') \cup \nu$ X.EnfPre $((X' \cap \neg \psi^a) \cup Y')$

Small problem

Which of the two cases above holds may not be under the control of the system. Alternative formula:

$$\mu Y.\nu X.$$
EnfPre $(\psi^g \cup Y' \cup (X' \cap \neg \psi^a))$

GR(1) Synthesis – Plugging things together

What is still missing

- The system goals need to be reached infinitely often
- Support for multiple environment goals and system goals

Completion of the formula

$$\mu Y.\nu X.$$
EnfPre $(\psi^g \cup Y' \cup (X' \cap \neg \psi^a))$

GR(1) Synthesis – Plugging things together

What is still missing

- The system goals need to be reached infinitely often
- Support for multiple environment goals and system goals

Completion of the formula

$$\begin{split} \mu Y.\nu X. \mathsf{EnfPre} \big(\psi^{\mathsf{g}} \cup Y' \cup \big(X' \cap \neg \psi^{\mathsf{a}} \big) \big) \\ & \quad \quad \ \ \, \psi \\ \nu Z. \mu Y.\nu X. \mathsf{EnfPre} \big(Z' \cap \psi^{\mathsf{g}} \cup Y' \cup \big(X' \cap \neg \psi^{\mathsf{a}} \big) \big) \end{split}$$

GR(1) Synthesis – Plugging things together

What is still missing

- The system goals need to be reached infinitely often
- Support for multiple environment goals and system goals

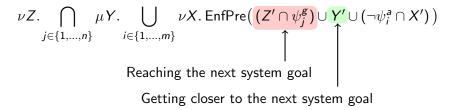
Completion of the formula

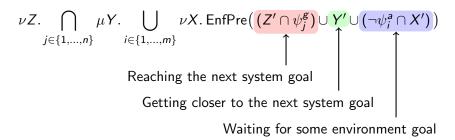
$$\begin{split} \mu Y.\nu X. \mathsf{EnfPre} (\psi^{\mathsf{g}} \cup Y' \cup (X' \cap \neg \psi^{\mathsf{a}})) \\ & \quad \quad \Downarrow \\ \nu Z.\mu Y.\nu X. \mathsf{EnfPre} (Z' \cap \psi^{\mathsf{g}} \cup Y' \cup (X' \cap \neg \psi^{\mathsf{a}})) \\ & \quad \quad \Downarrow \\ \nu Z. \bigcap_{i=1}^n \mu Y. \bigcup_{j=1}^m \nu X. \mathsf{EnfPre} (Z' \cap \psi_i^{\mathsf{g}} \cup Y' \cup (X' \cap \neg \psi_j^{\mathsf{a}})) \end{split}$$

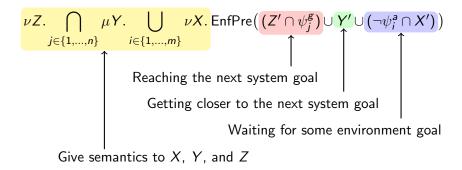
$$\nu Z. \bigcap_{j \in \{1,...,n\}} \mu Y. \bigcup_{i \in \{1,...,m\}} \nu X. \operatorname{EnfPre} \left(\left(Z' \cap \psi_j^{\mathsf{g}} \right) \cup Y' \cup \left(\neg \psi_i^{\mathsf{a}} \cap X' \right) \right)$$

$$\nu Z. \bigcap_{j \in \{1, \dots, n\}} \mu Y. \bigcup_{i \in \{1, \dots, m\}} \nu X. \operatorname{EnfPre} \left(\underbrace{(Z' \cap \psi_j^g)}_{j} \cup Y' \cup (\neg \psi_i^a \cap X') \right)$$

Reaching the next system goal







How do the synthesized strategies look like?

The equation

$$\nu Z. \bigcap_{i=1}^{n} \mu Y. \bigcup_{i=1}^{m} \nu X. \mathsf{EnfPre}(Z' \cap \psi_{i}^{g} \cup Y' \cup (X' \cap \neg \psi_{j}^{a}))$$

How do the synthesized strategies look like?

The equation

$$\nu Z. \bigcap_{i=1}^{n} \mu Y. \bigcup_{j=1}^{m} \nu X. \mathsf{EnfPre}(Z' \cap \psi_{i}^{g} \cup Y' \cup (X' \cap \neg \psi_{j}^{a}))$$

Strategy extraction

For every liveness guarantee no. $i \in \{1, \ldots, n\}$, the transitions computed during the computation of the νY prefix points while Z and X are fully evaluated represent the set of transitions getting closer to system goal i.

How do the synthesized strategies look like?

The equation

$$\nu Z. \bigcap_{i=1}^{n} \mu Y. \bigcup_{j=1}^{m} \nu X. \mathsf{EnfPre}(Z' \cap \psi_{i}^{g} \cup Y' \cup (X' \cap \neg \psi_{j}^{a}))$$

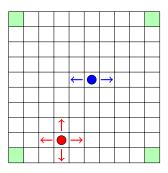
Strategy extraction

For every liveness guarantee no. $i \in \{1, \ldots, n\}$, the transitions computed during the computation of the νY prefix points while Z and X are fully evaluated represent the set of transitions getting closer to system goal i.

So the final strategy...

...performs the tasks in a round-robin fashion.

Toggling through the goals – A simple CPS example



```
[OUTPUT]

x:0...10

y:0...10

y:0...10

[SYS_INIT]

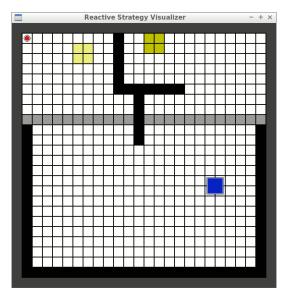
x=0

y=0
```

[INPUT]

```
[ENV_INIT]
0=0
[SYS_TRANS]
x'=x \mid y'=y
y' \le y+1
y'+1>=y
x' \le x+1
x'+1>=x
[SYS_LIVENESS]
x'=0 & y'=0
x'=10 \& y'=0
x'=10 \& v'=10
x'=0 & y'=10
[SYS_TRANS]
y'!=5 \mid o'!=y' \& o'+1!=y' \& o'!=y'+1
[ENV_LIVENESS]
o' = 0
o'=5
o' = 10
[ENV_TRANS]
o' < = o + 1
o'+1>=0
```

Another CPS example with a discrete abstraction



Some general notes on the practice of GR(1) synthesis

Notes

- Most GR(1) synthesis tools do not allow X in the liveness assumptions and guarantees
 - \rightarrow No big deal, we can use additional helper variables

Some general notes on the practice of GR(1) synthesis

Notes

- Most GR(1) synthesis tools do not allow X in the liveness assumptions and guarantees
 - \rightarrow No big deal, we can use additional helper variables

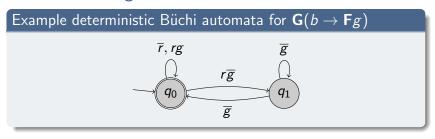
Example

$$\mathbf{GF}(y \wedge \mathbf{X}y)$$

$$\mathsf{GF}(y \land p) \land \mathsf{G}(\mathsf{X}p \leftrightarrow y) \land \neg p$$

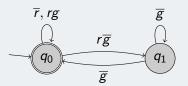
with the additional output proposition p

Encoding deterministic Büchi automata



Encoding deterministic Büchi automata

Example deterministic Büchi automata for $\mathbf{G}(b \to \mathbf{F}g)$



Slugs specification code (interpreting $\mathbf{G}(b o \mathbf{F}g)$ as a guarantee)

```
[OUTPUT]
s

[SYS_INIT]
! s

[SYS_TRANS]
s' <-> ((! g & s) | r & ! g)

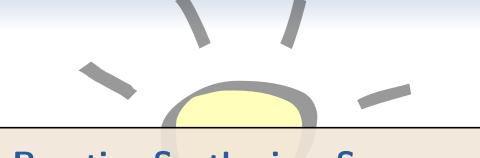
[SYS_LIVENESS]
! s'
```

GR(1) Synthesis – Conclusion

Summary

- Fast (exponential time) synthesis for simple specification classes
- Approach can be compressed to a single fixed point equation
 → allows extensions (e.g., Dathathri et al., 2017;
 Ehlers, 2011; Wolff et al.,
- Useful for CPS if an environment abstraction is available.

2013, ...)



Reactive Synthesis – Summary

Reactive Synthesis - Conclusion

Summary

- A more advanced approach to building correct-by-construction systems
- Main approach: Translate the synthesis problem to a game
- Main difficulty: The sizes of the game
- Generalized Reactivity(1)
 Synthesis as a way to build smaller games

References I

- Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv Sa'ar. Synthesis of reactive(1) designs. J. Comput. Syst. Sci., 78(3):911–938, 2012.
- Sumanth Dathathri, Scott C. Livingston, and Richard M. Murray. Enhancing tolerance to unexpected jumps in GR(1) games. In Proceedings of the 8th International Conference on Cyber-Physical Systems, ICCPS 2017, Pittsburgh, Pennsylvania, USA, April 18-20, 2017, pages 37–47, 2017. doi: 10.1145/3055004.3055014. URL http://doi.acm.org/10.1145/3055004.3055014.
- Rüdiger Ehlers. Generalized rabin(1) synthesis with applications to robust system synthesis. In NASA Formal Methods - Third International Symposium, NFM 2011, Pasadena, CA, USA, April 18-20, 2011. Proceedings, pages 101–115, 2011. doi: 10.1007/978-3-642-20398-5_9. URL https://doi.org/10.1007/978-3-642-20398-5_9.
- Javier Esparza, Jan Kretínský, Jean-François Raskin, and Salomon Sickert. From LTL and limit-deterministic büchi automata to deterministic parity automata. In Tools and Algorithms for the Construction and Analysis of Systems 23rd International Conference, TACAS 2017, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I, pages 426-442, 2017. doi: 10.1007/978-3-662-54577-5_25. URL https://doi.org/10.1007/978-3-662-54577-5_25.
- Marcin Jurdzinski. Small progress measures for solving parity games. In STACS 2000, 17th Annual Symposium on Theoretical Aspects of Computer Science, Lille, France, February 2000, Proceedings, pages 290–301, 2000. doi: 10.1007/3-540-46541-3_24. URL https://doi.org/10.1007/3-540-46541-3_24.
- Marcin Jurdzinski, Mike Paterson, and Uri Zwick. A deterministic subexponential algorithm for solving parity games. SIAM J. Comput., 38(4):1519–1532, 2008. doi: 10.1137/070686652. URL https://doi.org/10.1137/070686652.
- Robert McNaughton. Infinite games played on finite graphs. *Ann. Pure Appl. Logic*, 65(2):149–184, 1993. doi: 10.1016/0168-0072(93)90036-D. URL https://doi.org/10.1016/0168-0072(93)90036-D.
- Amir Pnueli and Roni Rosner. On the synthesis of an asynchronous reactive module. In Giorgio Ausiello, Mariangiola Dezani-Ciancaglini, and Simona Ronchi Della Rocca, editors, *ICALP*, volume 372 of *Lecture Notes in Computer Science*, pages 652–671. Springer, 1989. ISBN 3-540-51371-X.

References II

- Sven Schewe. Solving parity games in big steps. J. Comput. Syst. Sci., 84:243–262, 2017. doi: 10.1016/j.jcss.2016.10.002. URL https://doi.org/10.1016/j.jcss.2016.10.002.
- Eric M. Wolff, Ufuk Topcu, and Richard M. Murray. Efficient reactive controller synthesis for a fragment of linear temporal logic. In 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, May 6-10, 2013, pages 5033-5040, 2013. doi: 10.1109/ICRA.2013.6631296. URL https://doi.org/10.1109/ICRA.2013.6631296.
- Tichakorn Wongpiromsarn, Ufuk Topcu, Necmiye Ozay, Huan Xu, and Richard M. Murray. Tulip: a software toolbox for receding horizon temporal logic planning. In *Proceedings of the 14th ACM International Conference on Hybrid Systems*: Computation and Control, HSCC 2011, Chicago, IL, USA, April 12-14, 2011, pages 313–314, 2011. doi: 10.1145/1967701.1967747. URL http://doi.acm.org/10.1145/1967701.1967747.
- Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees. *Theor. Comput. Sci.*, 200(1-2):135–183, 1998. doi: 10.1016/S0304-3975(98)00009-7. URL https://doi.org/10.1016/S0304-3975(98)00009-7.